Skip to main content
Log in

Experimental study of electro-spraying modes of deionized water in atmospheric environment

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

The liquid emitting from capillary subjected to a high electric voltage could be dispersed in different ways depending on applied potential and flow rate. The electro-spraying of deionized water was experimentally studied adopting the high-speed camera under different operating parameters. The time resolved images and evolution of drop or/and jet initiation, pulsation, deformation, and separation from capillary tip or meniscus were captured and analyzed. The known electro-spraying modes were identified according to the geometrical forms of meniscus, jet, or/and drop. A spherical droplet with diameter larger than the outer diameter of capillary could be generated in dripping mode at low potential, while a spherical droplet with diameter smaller than outer diameter of capillary could be observed in micro-dripping mode with relative high potential. Spindle-like droplet could be found in spindle mode and usually further disperse into a few of drops with different size for larger flow rate. In the range of applied potential and flow rate, oscillating jet and simple jet could be found, where a long jet could be elongated by electric stresses and further break up into finer drops with highly charged drops. In addition, the operating parameters and drop sizes for different modes are also discussed. Meanwhile, the spraying modes with double capillaries were also observed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Böttner, C.-U., Sommerfeld, M. 2002. Numerical calculation of electrostatic powder painting using the Euler/Lagrange approach. Powder Technol, 125: 206–216.

    Google Scholar 

  • Choi, J., Kim, Y.-J., Lee, S., Son, S. U., Ko, H. S., Nguyen, V. D., Byun, D. 2008. Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Appl Phys Lett, 93: 193508.

    Google Scholar 

  • Cloupeau, M., Prunet-Foch, B. 1994. Electrohydrodynamic spraying functioning modes: a critical review. J Aerosol Sci, 25: 1021–1036.

    Google Scholar 

  • Deng, W., Klemic, J. F., Li, X., Reed, M. A., Gomez, A. 2006. Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets. J Aerosol Sci, 37: 696–714.

    Google Scholar 

  • Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science, 246: 64–71.

    Google Scholar 

  • Gan, Y., Luo, Z., Cheng, Y., Xu, J. 2015. The electro-spraying characteristics of ethanol for application in a small-scale combustor under combined electric field. Appl Therm Eng, 87: 595–604.

    Google Scholar 

  • Gan, Y., Zhang, X., Li, H., Tong, Y., Zhang, Y., Shi, Y., Yang, Z. 2016. Effect of a ring electrode on the cone-jet characteristics of ethanol in small-scale electro-spraying combustors. J Aerosol Sci, 98: 15–29.

    Google Scholar 

  • Gañán-Calvo, A. M. 1997. Cone-jet analytical extension of taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys Rev Lett, 79: 217–220.

    Google Scholar 

  • Gañán-Calvo, A. M., Davila, J., Barrero, A. 1997. Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci, 28: 249–275.

    Google Scholar 

  • Gañán-Calvo, A. M., Lasheras, J. C., Davila, J., Barrero, A. 1994. The electrostatic spray emitted from an electrified conical meniscus. J Aerosol Sci, 25: 1121–1142.

    Google Scholar 

  • Gañán-Calvo, A. M., Lopez-Herrera, J. M., Herrada, M. A., Ramos, A., Montanero, J. M. 2018. Review on the physics of electrospray: From electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J Aerosol Sci, 125: 32–56.

    Google Scholar 

  • Gañán-Calvo, A. M., Rebollo-Munoz, N., Montanero, J. M. 2013. Physical symmetries and scaling laws for the minimum or natural rate of flow and droplet size ejected by Taylor cone-jets. New J Phys, 15: 033035.

    Google Scholar 

  • Gaunt, L. F., Hughes, J. F., Harrison, N. M. 2003. Removal of domestic airborne dust particles by naturally charged liquid sprays. J Electrostat, 58: 159–169.

    Google Scholar 

  • Hayati, I., Bailey, A. I., Tadros, Th. F. 1987a. Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J Colloid Interf Sci, 117: 205–221.

    Google Scholar 

  • Hayati, I., Bailey, A., Tadros, T. 1987b. Investigations into the mechanism of electrohydrodynamic spraying of liquids. J Colloid Interf Sci, 117: 222–230.

    Google Scholar 

  • Jaworek, A., Krupa, A. 1999. Classification of the modes of EHD spraying. J Aerosol Sci, 30: 873–893.

    Google Scholar 

  • Jaworek, A., Krupa, A., Sobczyk, A. T., Marchewicz, A., Szudyga, M., Antes, T., Balachandran, W., di Natale, F., Carotenuto, C. 2013. Submicron particles removal by charged sprays. Fundamentals. J Electrostat, 71: 345–350.

    Google Scholar 

  • Jaworek, A., Sobczyk, A. T. 2008. Electrospraying route to nanotechnology: An overview. J Electrostat, 66: 197–219.

    Google Scholar 

  • Jayasinghe, S. N., Edirisinghe, M. J. 2002. Effect of viscosity on the size of relics produced by electrostatic atomization. J Aerosol Sci, 33: 1379–1388.

    Google Scholar 

  • Juraschek, R., Röllgen, F. W. 1998. Pulsation phenomena during electrospray ionization. Int J Mass Spectrom, 177: 1–15.

    Google Scholar 

  • Karbalaei, A., Cho, H. J. 2020. Passive mixing rate of trapped squeezed nanodroplets—A time scale analysis. Exp Comput Multiphase Flow, 2: 135–141.

    Google Scholar 

  • Kelly, A. J. 1994. On the statistical, quantum and practical mechanics of electrostatic atomization. J Aerosol Sci, 25: 1159–1177.

    Google Scholar 

  • Kim, H. H., Kim, J. H., Ogata, A. 2011. Time-resolved high-speed camera observation of electrospray. J Aerosol Sci, 42: 249–263.

    Google Scholar 

  • Kim, H. H., Teramoto, Y., Negishi, N., Ogata, A., Kim, J. H., Pongrac, B., MacHala, Z., Ganan-Calvo, A. M. 2014. Polarity effect on the electrohydrodynamic (EHD) spray of water. J Aerosol Sci, 76: 98–114.

    Google Scholar 

  • Kim, J. H., Lee, H. S., Kim, H. H., Ogata, A. 2010. Electrospray with electrostatic precipitator enhances fine particles collection efficiency. J Electrostat, 68: 305–310.

    Google Scholar 

  • Lastow, O., Balachandran, W. 2007. Novel low voltage EHD spray nozzle for atomization of water in the cone jet mode. J Electrostat, 65: 490–499.

    Google Scholar 

  • Law, S. E. 1983. Electrostatic pesticide spraying: Concepts and practice. IEEE T Ind Appl, IA-19: 160-168.

    Google Scholar 

  • Law, S. E. 1989. Electrical interactions occurring at electrostatic spraying targets. J Electrostat, 23: 145–156.

    Google Scholar 

  • Lee, M. W., Kim, N. Y., Yoon, S. S. 2013. On pinchoff behavior of electrified droplets. J Aerosol Sci, 57: 114–124.

    Google Scholar 

  • Li, J. L., Tok, A. 2008. Electrospraying of water in the cone-jet mode in air at atmospheric pressure. Int J Mass Spectrom, 272: 199–203.

    Google Scholar 

  • MacHala, Z., Chladekova, L., Pelach, M. 2010. Plasma agents in bio-decontamination by dc discharges in atmospheric air. J Phys D: Appl Phys, 43: 222001.

    Google Scholar 

  • Martinez-Sanchez, M., Pollard, J. E. 1998. Spacecraft electric propulsion-an overview. J Propul Power, 14: 688–699.

    Google Scholar 

  • Maski, D., Durairaj, D. 2010. Effects of electrode voltage, liquid flow rate, and liquid properties on spray chargeability of an air-assisted electrostatic-induction spray-charging system. J Electrostat, 68: 152–158.

    Google Scholar 

  • Matthews, G. A. 1989. Elestrostatic spraying of pesticides: a review. Crop Protect, 8: 3–15.

    Google Scholar 

  • Miao, P., Balachandran, W., Xiao, P. 2002. Formation of ceramic thin films using electrospray in cone-jet mode. IEEE T Ind Appl, 38: 50–56.

    Google Scholar 

  • Pongrác, B., Kim, H. H., Negishi, N., MacHala, Z. 2014. Influence of water conductivity on particular electrospray modes with dc corona discharge—optical visualization approach. Eur Phys J D, 68: 224.

    Google Scholar 

  • Rosell-Llompart, J., Grifoll, J., Loscertales, I. G. 2018. Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. J Aerosol Sci, 125: 2–31.

    Google Scholar 

  • Sato, M., Kudo, N., Saito, N. 1998. Surface tension reduction of liquid by applied electric field using vibrating jet method. IEEE T Ind Appl, 34: 294–300.

    Google Scholar 

  • Tang, K., Gomez, A. 1995. Generation of monodisperse water droplets from electrosprays in a corona-assisted cone-jet mode. J Colloid Interf Sci, 175: 326–332.

    Google Scholar 

  • Tang, L., Kebarle, P. 1991. Effect of the conductivity of the electrosprayed solution on the electrospray current. Factors determining analyte sensitivity in electrospray mass spectrometry. Anal Chem, 63: 2709–2715.

    Google Scholar 

  • Waits, C. M., Hanrahan, B., Lee, I. 2010. Multiplexed electrospray scaling for liquid fuel injection. J Micromechan Microeng, 20: 104010.

    Google Scholar 

  • Wang, Z., Dong, K., Tian, L., Wang, J., Tu, J. 2018c. Numerical study on coalescence behavior of suspended drop pair in viscous liquid under uniform electric field. AIP Adv, 8: 085215.

    Google Scholar 

  • Wang, Z., Li, R., Tian, L., Xia, L., Zhan, S., Wang, J., Tu, J. 2019. Visualization of periodic emission of drops with micro-dripping mode in electrohydrodynamic (EHD) atomization. Exp Therm Fluid Sci, 105: 307–315.

    Google Scholar 

  • Wang, Z., Mitrašinovic, A., Wen, J. 2012. Investigation on electrostatical breakup of bio-oil droplets. Energies, 5: 4323–4339.

    Google Scholar 

  • Wang, Z., Tian, L., Xia, L., Dong, J., Wang, J., Tu, J. 2018b. Experimental study on repetition frequency of drop/jet movement in electrospraying of deionized water. Aerosol Air Qual Res, 18: 301–313.

    Google Scholar 

  • Wang, Z., Xia, L., Tian, L., Wang, J., Zhan, S., Huo, Y., Tu, J. 2018a. Natural periodicity of electrohydrodynamic spraying in ethanol. J Aerosol Sci, 117: 127–138.

    Google Scholar 

  • Wang, Z., Xia, L., Zhan, S. 2017. Experimental study on electrohydrodynamics (EHD) spraying of ethanol with double-capillary. Appl Therm Eng, 120: 474–483.

    Google Scholar 

  • Yogi, O., Kawakami, T., Mizuno, A. 2006. Properties of droplet formation made by cone jet using a novel capillary with an external electrode. J Electrostat, 64: 634–638.

    Google Scholar 

  • Zeleny, J. 1914. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev, 3: 69–91.

    Google Scholar 

  • Zeleny, J. 1917. Instability of electrified liquid surfaces. Phys Rev, 10: 1–8.

    Google Scholar 

  • Zhang, J., He, H., Huang, G. 2018. Dynamic characteristics of charged droplets in an electrostatic spraying process with twin capillaries. Chinese J Chem Eng, 26: 2403–2411.

    Google Scholar 

  • Zhang, X., Basaran, O. A. 1996. Dynamics of drop formation from a capillary in the presence of an electric field. J Fluid Mechan, 326: 239–263.

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (No. 51106064), Natural Science Foundation of Jiangsu Province, China (No. BK20171301), China Postdoctoral Science Foundation (No. 2018M635545), and a project supported by Jiangsu University for NSFC (No. FCJJ2015001) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhentao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, Z., Jiang, Y. et al. Experimental study of electro-spraying modes of deionized water in atmospheric environment. Exp. Comput. Multiph. Flow 3, 38–46 (2021). https://doi.org/10.1007/s42757-019-0057-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0057-3

Keywords

Navigation