Skip to main content
Log in

Pressure fluctuation instability in vertical plug formation of coarse particles with a non-mechanical feeder

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

Plug conveying receives attention due to its advantages such as low particle attrition, low pipeline wear, and low energy consumption. Based on the background of pneumatic transportation of absorber spheres in the small absorber sphere system of pebble bed HTGR, a novel non-mechanical feeder for plug formation of coarse particles has been proposed in our previous work. We further investigate the pressure fluctuation instability in the vertical plug formation of coarse particles with the non-mechanical feeder. Experiments for plug formation are conducted with glass beads of three kinds of particle diameter (dp = 6, 4, and 2 mm). The results show that micro-scale instabilities along with macro-scale instabilities are observed for the pressure fluctuations of feeder gas inlet in the vertical plug formation for the three particle diameters. It is interesting to find that the micro-scale instabilities decrease first and then increase with superficial gas velocity increasing for dp = 6 and 4 mm glass beads, respectively. The present study provides a further understanding of the pressure fluctuation instabilities in vertical plug formation of coarse particles with the non-mechanical feeder, which can contribute for on-line monitoring and operation optimization of dense-phase gas–solid flows with coarse particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  • Agrawal, K., Loezos, P., Syamlal, M., Sundaresan, S. 2001. The role of meso-scale structures in rapid gas–solid flows. J Fluid Mech, 445: 151–185.

    Article  MATH  Google Scholar 

  • Bi, H. T. 2007. A critical review of the complex pressure fluctuation phenomenon in gas–solids fluidized beds. Chem Eng Sci, 62: 3473–3493.

    Article  Google Scholar 

  • Cahyadi, A., Anantharaman, A., Yang, S. L., Karri, S. B. R., Findlay, J. G., Cocco, R. A., Chew, J. W. 2017. Review of cluster characteristics in circulating fluidized bed (CFB) risers. Chem Eng Sci, 158: 70–95.

    Article  Google Scholar 

  • Cong, X. L., Guo, X. L., Lu, H. F., Gong, X., Liu, K., Sun, X. L., Xie, K. 2013. Flow patterns of pulverized coal pneumatic conveying and time-series analysis of pressure fluctuations. Chem Eng Sci, 101: 303–314.

    Article  Google Scholar 

  • Ellis, N., Briens, L. A., Grace, J. R., Bi, H. T., Lim, C. J. 2003. Characterization of dynamic behaviour in gas–solid turbulent fluidized bed using chaos and wavelet analyses. Chem Eng J, 96: 105–116.

    Article  Google Scholar 

  • Fullmer, W. D., Hrenya, C. M. 2017. The clustering instability in rapid granular and gas–solid flows. Annu Rev Fluid Mech, 49: 485–510.

    Article  MathSciNet  MATH  Google Scholar 

  • Ge, W., Wang, L. M., Xu, J., Chen, F. G., Zhou, G. Z., Lu, L. Q., Chang, Q., Li, J. H. 2017. Discrete simulation of granular and particle-fluid flows: From fundamental study to engineering application. Rev Chem Eng, 33: 551–623

    Article  Google Scholar 

  • Goldhirsch, I., Zanetti, G. 1993. Clustering instability in dissipative gases. Phys Rev Lett, 70: 1619–1622.

    Article  Google Scholar 

  • Johnsson, F., Zijerveld, R. C., Schouten, J. C., van den Bleek, C. M., Leckner, B. 2000. Characterization of fluidization regimes by time-series analysis of pressure fluctuations. Int J Multiphase Flow, 26: 663–715.

    Article  MATH  Google Scholar 

  • Klinzing, G. E., Rizk, F., Marcus, R., Leung, L. S. 2011. Pneumatic Conveying of Solids: A Theoretical and Practical Approach, 3rd edn. Springer Science & Business Media.

  • Kofu, K. 2016. Pressure loss reduction in horizontal plug conveying of granular particles with ultrasonic vibration. Powder Technol, 294: 202–210.

    Article  Google Scholar 

  • Konrad, K. 1986. Dense-phase pneumatic conveying: A review. Powder Technol, 49: 1–35.

    Article  Google Scholar 

  • Lecreps, I., Orozovic, O., Erden, T., Jones, M. G., Sommer, K. 2014. Physical mechanisms involved in slug transport and pipe blockage during horizontal pneumatic conveying. Powder Technol, 262: 82–95.

    Article  Google Scholar 

  • Li, H. 2002. Application of wavelet multi-resolution analysis to pressure fluctuations of gas–solid two-phase flow in a horizontal pipe. Powder Technol, 125: 61–73.

    Article  Google Scholar 

  • Li, T. J., Zhang, H., Liu, M., Huang, Z., Bo, H., Dong, Y. 2018. Experimental investigation on vertical plug formation of coarse particles by a non-mechanical feeder. Powder Technol, 338: 692–701.

    Article  Google Scholar 

  • Li, T. J., Zhang, H., Liu, M. L., Huang, Z. Y., Bo, H. L., Dong, Y. J. 2017. DEM study of granular discharge rate through a vertical pipe with a bend outlet in small absorber sphere system. Nucl Eng Des, 314: 1–10.

    Article  Google Scholar 

  • Llop, M. F., Gascons, N. 2018. Multiresolution analysis of gas fluidization by empirical mode decomposition and recurrence quantification analysis. Int J Multiphase Flow, 105: 170–184.

    Article  MathSciNet  Google Scholar 

  • Locatelli, G., Mancini, M., Todeschini, N. 2013. Generation IV nuclear reactors: Current status and future prospects. Energ Policy, 61: 1503–1520.

    Article  Google Scholar 

  • Lu, X. S., Li, H. Z. 1999. Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed. Chem Eng J, 75: 113–119.

    Article  Google Scholar 

  • Mallat, S. G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: 674–693.

    Article  MATH  Google Scholar 

  • Mi, B., Wypych, P. W. 1995. Investigations into wall pressure during slug-flow pneumatic conveying. Powder Technol, 84: 91–98.

    Article  Google Scholar 

  • Nied, C., Lindner, J. A., Sommer, K. 2017. On the influence of the wall friction coefficient on void fraction gradients in horizontal pneumatic plug conveying measured by electrical capacitance tomography. Powder Technol, 321: 310–317.

    Article  Google Scholar 

  • Pahk, J. B., Vasquez, N. A., Jacob, K., Klinzing, G. E. 2013. Frictional force measurement for multiple plugs in dense phase pneumatic conveying of polymer particles: An industry application. Ind Eng Chem Res, 52: 199–206.

    Google Scholar 

  • Pan, R., Wypych, P. W. 1997. Pressure drop and slug velocity in low-velocity pneumatic conveying of bulk solids. Powder Technol, 94: 123–132.

    Article  Google Scholar 

  • Rawat, A., Kalman, H. 2017. Detachment velocity: A borderline between different types of particulate plugs. Powder Technol, 321: 293–300.

    Article  Google Scholar 

  • Sasic, S., Leckner, B., Johnsson, F. 2007. Characterization of fluid dynamics of fluidized beds by analysis of pressure fluctuations. Prog Energ Combust, 33: 453–496.

    Article  Google Scholar 

  • Setia, G., Mallick, S. S., Pan, R., Wypych, P. W. 2015. Modeling minimum transport boundary for fluidized dense-phase pneumatic conveying systems. Powder Technol, 277: 244–251.

    Article  Google Scholar 

  • Shaul, S., Kalman, H. 2014. Friction forces of particulate plugs moving in vertical and horizontal pipes. Powder Technol, 256: 310–323.

    Article  Google Scholar 

  • Shaul, S., Kalman, H. 2015. Three plugs model. Powder Technol, 283: 579–592.

    Article  Google Scholar 

  • Strauß, M., McNamara, S., Herrmann, H. J., Niederreiter, G., Sommer, K. 2006. Plug conveying in a vertical tube. Powder Technol, 162: 16–26.

    Article  Google Scholar 

  • Sturm, M., Wirtz, S., Scherer, V., Denecke, J. 2010. Coupled DEM-CFD simulation of pneumatically conveyed granular media. Chem Eng Technol, 33: 1184–1192.

    Article  Google Scholar 

  • Sundaresan, S. 2003. Instabilities in fluidized beds. Annu Rev Fluid Mech, 35: 63–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsuji, Y., Asano, R. 1990. Fundamental investigation of plug conveying of cohesionless particles in a vertical pipe (pressure-drop and friction of a stationary plug). Can J Chem Eng, 68: 758–767.

    Article  Google Scholar 

  • Tsuji, Y., Tanaka, T., Ishida, T. 1992. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol, 71: 239–250.

    Article  Google Scholar 

  • Van Ommen, J. R., Sasic, S., van der Schaaf, J., Gheorghiu, S., Johnsson, F., Coppens, M. O. 2011. Time-series analysis of pressure fluctuations in gas–solid fluidized beds—A review. Int J Multiphase Flow, 37: 403–428.

    Article  Google Scholar 

  • Van Ommen, J. R., Schouten, J. C., vander Stappen, M. L. M., van den Bleek, C. M. 1999. Response characteristics of probe–transducer systems for pressure measurements in gas–solid fluidized beds: How to prevent pitfalls in dynamic pressure measurements. Powder Technol, 106: 199–218.

    Article  Google Scholar 

  • Welch, P. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15: 70–73.

    Article  Google Scholar 

  • Wu, B. Y., Kantzas, A., Bellehumeur, C. T., He, Z. X., Kryuchkov, S. 2007. Multiresolution analysis of pressure fluctuations in a gas–solids fluidized bed: Application to glass beads and polyethylene powder systems. Chem Eng J, 131: 23–33.

    Article  Google Scholar 

  • Wu, G., He, Y., Luo, L., Chen, W. 2019. Dynamic characterizations of gas–solid flow in a novel multistage fluidized bed via nonlinear analyses. Chem Eng J, 359: 1013–1023.

    Article  Google Scholar 

  • Wu, Z. X., Zhang, Z. Y. 2004. The advanced nuclear energy system and high temperature gas-cooled reactor. Beijing: Tsinghua University Press. (in Chinese)

    Google Scholar 

  • Wypych, P. W., Yi, J. L. 2003. Minimum transport boundary for horizontal dense-phase pneumatic conveying of granular materials. Powder Technol, 129: 111–121.

    Article  Google Scholar 

  • Xiang, J., Li, Q. H., Tan, Z. C., Zhang, Y. G. 2017. Characterization of the flow in a gas–solid bubbling fluidized bed by pressure fluctuation. Chem Eng Sci, 174: 93–103.

    Article  Google Scholar 

  • Zhang, H., Li, T. J., Huang, Z. Y., Kuang, S. B., Yu, A. B. 2018. Investigation on vertical plug formation of coarse particles in a non-mechanical feeder by CFD-DEM coupling method. Powder Technol, 332: 79–89.

    Article  Google Scholar 

  • Zhang, H., Liu, M. L., Li, T. J., Huang, Z. Y., Bo, H. L., Dong, Y. J. 2016a. Experimental study on plug formation characteristics of a novel draft tube type feeder for vertical pneumatic conveying of coarse particles. Powder Technol, 301: 730–736.

    Article  Google Scholar 

  • Zhang, H., Liu, M. L., Li, T. J., Huang, Z. Y., Sun, X. M., Bo, H. L., Dong, Y. J. 2017. Experimental investigation on gas-solid hydrodynamics of coarse particles in a two-dimensional spouted bed. Powder Technol, 307: 175–183.

    Article  Google Scholar 

  • Zhang, Z. Y., Wu, Z. X., Sun, Y. L., Li, F. 2006. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM. Nucl Eng Des, 236: 485–490.

    Article  Google Scholar 

  • Zhang, Z. Y., Dong, Y. J., Li, F., Zhang, Z. M., Wang, H. T., Huang, X. J., Li, H., Liu, B., Wu, X. X., Wang, H. et al. 2016b. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: An engineering and technological innovation. Engineering, 2: 112–118.

    Article  Google Scholar 

  • Zhang, Z. Y., Wu, Z. X., Wang, D. Z., Xu, Y. H., Sun, Y. L., Li, F., Dong, Y. J. 2009. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant. Nucl Eng Des, 239: 1212–1219.

    Article  Google Scholar 

  • Zhao, G. B., Yang, Y. R. 2003. Multiscale resolution of fluidized-bed pressure fluctuations. AIChE J, 49: 869–882.

    Article  Google Scholar 

  • Zhou, H. Z., Huang, Z. Y., Diao, X. Z. 2002. Design and verification test of the small absorber ball system of the HTR-10. Nucl Eng Des, 218: 155–162.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (Grant No. 51506113), the National S&T Major Project (Grant No. ZX069), and the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education (No. ARES-2019-08) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, X., Yan, H., Li, T. et al. Pressure fluctuation instability in vertical plug formation of coarse particles with a non-mechanical feeder. Exp. Comput. Multiph. Flow 2, 79–88 (2020). https://doi.org/10.1007/s42757-019-0028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0028-8

Keywords

Navigation