Skip to main content
Log in

Verlinde/Grassmannian Correspondence and Rank 2 \(\delta\)-Wall-Crossing

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

Motivated by Witten’s work, we propose a K-theoretic Verlinde/Grassmannian correspondence which relates the GL Verlinde numbers to the K-theoretic quasimap invariants of the Grassmannian. We recover these two types of invariants by imposing different stability conditions on the gauged linear sigma model associated with the Grassmannian. We construct two families of stability conditions connecting the two theories and prove two wall-crossing results. We confirm the Verlinde/Grassmannian correspondence in the rank two case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The stability parameter \(\tau\) in [9] is related to \(\delta\) by \(d+\delta =n\tau\).

  2. There are different conventions in the definitions of the Schur functor. We use the one introduced in [26, §6]. For example, if \(\lambda =(a)\), we have \(\mathbb {S}_{\lambda }(V)=\text {Sym}^aV\); if \(\lambda =(1,\dots ,1)\) with 1 repeated b times, then \(\mathbb {S}_{\lambda }(V)=\wedge ^bV\).

  3. The proof of the lower bounds is given in [63, Proposition 5.1]. It works for any genus but needs to be modified slightly in the case \(g=0\). According to the proof, one needs to obtain the lower bound for \(n_1(n-n_1)(g-1)\), where \(n_1\in \{1,2,\dots ,n-1\}\). This gives rise to the first terms on the right-hand side of (1)–(4). If \(g\ge 1\), we have \(n_1(n-n_1)(g-1)\ge (n-1)(g-1)\); if \(g=0\), we have \(-n_1(n-n_1)\ge -n^2/4\).

  4. The version of K-theoretic localization formula in [40, Theorem 5.15] requires the virtual normal bundles to have global two-term locally free resolutions (see Assumption 5.4 of [40]). As we will see in the Appendix, the virtual normal bundle \(N^{\mathrm {vir},\mathrm {rel}}_{F_{d'}/QG^{0+}_{0,1}}\) is in fact a vector bundle over \(F_{d'}\). Then Lemma 6.10 and Lemma 6.11 imply that our master space satisfies this assumption.

  5. There is a mistake in [65, (20)], in which the triple product in the second line of (63) is missing.

References

  1. Agnihotri, S., Woodward, C.: Eigenvalues of products of unitary matrices and quantum Schubert calculus. Math. Res. Lett. 5(6), 817–836 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Alexeev, V., Guy, G.M.: Moduli of weighted stable maps and their gravitational descendants. J. Inst. Math. Jussieu 7(3), 425–456 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bayer, A., Manin, Y.I.: Stability conditions, wall-crossing and weighted Gromov–Witten invariants. Mosc. Math. J. 9(1), 3–32, backmatter (2009)

    MathSciNet  MATH  Google Scholar 

  4. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Comm. Math. Phys. 164(2), 385–419 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Behrend, K., Fantechi, B.: The intrinsic normal cone. Invent. Math. 128(1), 45–88 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Belkale, P.: Local systems on \({\mathbb{P}}^1-S\) for \(S\) a finite set. Compositio Math. 129(1), 67–86 (2001)

  7. Belkale, P.: Quantum generalization of the Horn conjecture. J. Am. Math. Soc. 21(2), 365–408 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Bertram, A., Ciocan-Fontanine, I., Kim, B.: Two proofs of a conjecture of Hori and Vafa. Duke Math. J. 126(1), 101–136 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Bertram, A., Daskalopoulos, G., Wentworth, R.: Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians. J. Am. Math. Soc. 9(2), 529–571 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Biswas, I.: A criterion for the existence of a parabolic stable bundle of rank two over the projective line. Int. J. Math. 9(5), 523–533 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Biswas, I.: On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures. Asian J. Math. 3(2), 333–344 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Boden, H.U., Hu, Y.: Variations of moduli of parabolic bundles. Math. Ann. 301(3), 539–559 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Bradlow, S.B.: Special metrics and stability for holomorphic bundles with global sections. J. Differ. Geom. 33(1), 169–213 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Bradlow, S.B., Daskalopoulos, G.D.: Moduli of stable pairs for holomorphic bundles over Riemann surfaces. Int. J. Math. 2(5), 477–513 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Buch, A.S., Mihalcea, L.C.: Quantum \(K\)-theory of Grassmannians. Duke Math. J. 156(3), 501–538 (2011)

  16. Ciocan-Fontanine, I., Kapranov, M.: Virtual fundamental classes via dg-manifolds. Geom. Topol. 13(3), 1779–1804 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Ciocan-Fontanine, I., Kim, B.: Wall-crossing in genus zero quasimap theory and mirror maps. Algebr. Geom. 1(4), 400–448 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Ciocan-Fontanine, I., Kim, B., Maulik, D.: Stable quasimaps to GIT quotients. J. Geom. Phys. 75, 17–47 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ciocan-Fontanine, I., Kim, B.: Big \(I\)-functions. In: Development of Moduli Theory—Kyoto 2013, Adv. Stud. Pure Math., 69. Math. Soc. Japan, Tokyo, 323–347 (2016)

  20. Clader, E., Janda, F., Ruan, Y.B.: Higher-genus wall-crossing in the gauged linear sigma model. (With an appendix by Yang Zhou.) Duke Math. J. 170(4), 697–773 (2021)

  21. Dolgachev, I.V., Hu, Y.: Variation of geometric invariant theory quotients. (With an appendix by Nicolas Ressayre.) Inst. Hautes Études Sci. Publ. Math. 87, 5–56 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Drezet, J.-M., Narasimhan, M.S.: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math. 97(1), 53–94 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3(2), 347–374 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Fan, H.J., Jarvis, T.J., Ruan, Y.B.: A mathematical theory of the gauged linear sigma model. Geom. Topol. 22(1), 235–303 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Fulton, W., Lang, S.: Riemann–Roch Algebra. Grundlehren der mathematischen Wissenschaften, 277. Springer, New York (1985)

    MATH  Google Scholar 

  26. Fulton, W., Harris, J.: Representation Theory, A First Course. Graduate Texts in Mathematics, 129. Readings in Mathematics, Springer, New York (1991)

  27. Gepner, D.: Fusion rings and geometry. Commun. Math. Phys. 141(2), 381–411 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135(2), 487–518 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Grothendieck, A.: Techniques de construction en géométrie analytique. V. Fibrés vectoriels, fibrés projectifs, fibrés en drapeaux. Séminaire Henri Cartan 13(1), Exp. No. 12, 15 pp. (1960–1961)

  30. Gu, W., Mihalcea, L., Sharpe, E., Zou, H.: Quantum K theory of symplectic Grassmannians. arXiv:2008.04909 (2020)

  31. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer, New York (1977)

    Google Scholar 

  32. Hassett, B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Heinloth, J., Schmitt, A.H.W.: The cohomology rings of moduli stacks of principal bundles over curves. Doc. Math. 15, 423–488 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Heinloth, J.: Lectures on the moduli stack of vector bundles on a curve. In: Affine Flag Manifolds and Principal Bundles, Trends Math., Birkhäuser/Springer Basel AG, Basel, 123–153 (2010)

  35. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd Ed. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2010)

  36. Intriligator, K.: Fusion residues. Mod. Phys. Lett. A 6(38), 3543–3556 (1991)

    MathSciNet  MATH  Google Scholar 

  37. Jockers, H., Mayr, P.: A 3D gauge theory/quantum K-theory correspondence. Adv. Theor. Math. Phys. 24(2), 327–458 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Jockers, H., Mayr, P., Ninad, U., Tabler, A.E.: Wilson loop algebras and quantum K-theory for Grassmannians. J. High Energy Phys. 2020(10), Art. 36, 19 pp. (2020)

  39. Kapustin, A., Willett, B.: Wilson loops in supersymmetric Chern–Simons-matter theories and duality. arXiv:1302.2164 (2013)

  40. Kiem, Y.-H., Savvas, M.: Localizing virtual structure sheaves for almost perfect obstruction theories. Forum Math. Sigma 8, Paper No. e61, 36 pp. (2020)

  41. Kim, B., Kresch, A., Oh, Y.-G.: A compactification of the space of maps from curves. Trans. Am. Math. Soc. 366(1), 51–74 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand. 39(1), 19–55 (1976)

  43. Le Potier, J.: Lectures on Vector Bundles. (Translated by A. Maciocia.) Cambridge Studies in Advanced Mathematics, 54. Cambridge University Press, Cambridge (1997)

  44. Lee, Y.-P.: Quantum \(K\)-theory. I. Foundations. Duke Math. J. 121(3), 389–424 (2004)

  45. Lin, Y.B.: Moduli spaces of stable pairs. Pac. J. Math. 294(1), 123–158 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Marian, A.: On the intersection theory of Quot schemes and moduli of bundles with sections. J. Reine Angew. Math. 610, 13–27 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Marian, A., Oprea, D.: Virtual intersections on the Quot scheme and Vafa-Intriligator formulas. Duke Math. J. 136(1), 81–113 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Marian, A., Oprea, D.: Counts of maps to Grassmannians and intersections on the moduli space of bundles. J. Differ. Geom. 76(1), 155–175 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Marian, A., Oprea, D.: The level-rank duality for non-abelian theta functions. Invent. Math. 168(2), 225–247 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Marian, A., Oprea, D.: GL Verlinde numbers and the Grassmann TQFT. Port. Math. 67(2), 181–210 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Marian, A., Oprea, D., Pandharipande, R.: The moduli space of stable quotients. Geom. Topol. 15(3), 1651–1706 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd Ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer, Berlin (1994)

    MATH  Google Scholar 

  53. Mustaţă, A., Mustaţă, M.A.: Intermediate moduli spaces of stable maps. Invent. Math. 167(1), 47–90 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Oprea, D.: Notes on the moduli space of stable quotients. In: Compactifying Moduli Spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 69–135 (2016)

  55. Pauly, C.: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84(1), 217–235 (1996)

    MathSciNet  MATH  Google Scholar 

  56. Qu, F.: Virtual pullbacks in \(K\)-theory. Ann. Inst. Fourier (Grenoble) 68(4), 1609–1641 (2018)

  57. Ruan, Y.B., Zhang, M.: The level structure in quantum K-theory and mock theta functions. arXiv:1804.06552 (2018)

  58. Scattareggia, G.: A perfect obstruction theory for moduli of coherent systems. arXiv:1803.00869 (2018)

  59. Schmitt, A.: A universal construction for moduli spaces of decorated vector bundles over curves. Transform. Groups 9(2), 167–209 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Schmitt, A.H.W.: Geometric invariant theory and decorated principal bundles. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)

  61. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    MathSciNet  MATH  Google Scholar 

  62. Stacks Project Authors: The Stacks Project. https://stacks.math.columbia.edu (2018)

  63. Sun, X.T.: Degeneration of moduli spaces and generalized theta functions. J. Algebraic Geom. 9(3), 459–527 (2000)

    MathSciNet  MATH  Google Scholar 

  64. Sun, X.T.: Factorization of generalized theta functions revisited. Algebra Colloq. 24(1), 1–52 (2017)

    MathSciNet  MATH  Google Scholar 

  65. Taipale, K.: K-theoretic J-functions of type A flag varieties. Int. Math. Res. Not. IMRN 2013(16), 3647–3677 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117(2), 317–353 (1994)

    MathSciNet  MATH  Google Scholar 

  67. Thaddeus, M.: Geometric invariant theory and flips. J. Am. Math. Soc. 9(3), 691–723 (1996)

    MathSciNet  MATH  Google Scholar 

  68. Toda, Y.: Moduli spaces of stable quotients and wall-crossing phenomena. Compos. Math. 147(5), 1479–1518 (2011)

    MathSciNet  MATH  Google Scholar 

  69. Ueda, K., Yoshida, Y.: 3d \({\cal{N}}= 2\) Chern–Simons-matter theory, Bethe ansatz, and quantum \(K\)-theory of Grassmannians. J. High Energy Phys., 2020(8), Art. 157, 43 pp. (2020)

  70. Vafa, C.: Topological mirrors and quantum rings. In: Essays on Mirror Manifolds, International Press, Hong Kong, 96–119 (1992)

  71. Verlinde, E.: Fusion rules and modular transformations in \(2\)D conformal field theory. Nucl. Phys. B 300(3), 360–376 (1988)

  72. Wen, Y.X.: K-Theoretic \(I\)-function of \(V/\!/_{\theta } {\mathbf{G}}\) and Application. arXiv:1906.00775 (2019)

  73. Weyman, J.: Cohomology of Vector Bundles and Syzygies. Cambridge Tracts in Mathematics, 149. Cambridge University Press, Cambridge (2003)

  74. Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian. In: Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topology, IV. International Press, Cambridge, 357–422 (1995)

  75. Yokogawa, K.: Infinitesimal deformation of parabolic Higgs sheaves. Int. J. Math. 6(1), 125–148 (1995)

    MathSciNet  MATH  Google Scholar 

  76. Zhou, Y.: Higher-genus wall-crossing in Landau–Ginzburg theory. Adv. Math. 361, 106914, 42 pp. (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank Witten for many inspirational comments on the topic. The second author would like to thank Prakash Belkale, Qile Chen, Ajneet Dhillon, Thomas Goller, Wei Gu, Daniel Halpern-Leistner, Yi Hu, Dragos Oprea, Jeongseok Oh, Feng Qu, Xiaotao Sun, Yaoxiong Wen, and Yang Zhou for helpful discussions. Both authors wish to thank Davesh Maulik for his participation in the early stage of the project and constant support. Finally, we would like to thank the referees for providing detailed and valuable feedback that helped significantly improve the exposition of the paper. The bulk of this work was done during the first author’s tenure at University of Michigan and he was partially supported by NSF grant DMS 1807079 and NSF FRG grant DMS 1564457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Ruan.

Appendix A: K-Theoretic I-Function of the Grassmannian and Wall-Crossing Contributions

Appendix A: K-Theoretic I-Function of the Grassmannian and Wall-Crossing Contributions

In this appendix, we compute the function \(\mu ^{W_1}_{d'}(q)\) which shows up in the wall-crossing contributions in Theorem 6.13. This function is closely related to the K-theoretic small I-function of the Grassmannian. The level-0 K-theoretic small I-function of \(\text {Gr}(n,N)\) was computed in [65] and the computation was generalized to the case for arbitrary level structure in [72]. Both computations are generalizations of [8] on the cohomological small I-function of \(\text {Gr}(n,N)\).

Recall that \(QG^{\epsilon =0+}_{g,k}(\mathrm {Gr}(n,N),d)\) denotes the \((\epsilon =0+)\)-stable quasimap graph space and there is a \(\mathbb {C}^{*}\)-action on it defined by (52). The K-group valued rational function \(\mu ^{W_1}_{d'}(q)\) in the proof of Theorem 6.13 is defined using this \(\mathbb {C}^{*}\)-action on \(QG^{0+}_{0,1}:=QG^{\epsilon =0+}_{0,1}(\mathrm {Gr}(n,N),d)\). Recall that \(F_{d}\subset QG^{0+}_{0,1}\) is the distinguished \(\mathbb {C}^*\)-fixed point locus parametrizing quasimaps

$$\begin{aligned} (\mathbb {P}^1,q_\bullet ,E,s), \end{aligned}$$

where the only marking \(q_\bullet\) lies at \(\infty \in \mathbb {P}^1\) and the only base point of s is at 0. We want to analyze \(N^{\text {vir},\text {rel}}_{F_{d}/QG^{0+}_{0,1}}\), i.e., the moving part of the relative perfect obstruction theory (58).

In fact, we only need to study the quasimap graph space \(QG^{0+}_{0,0}:=QG^{0+}_{0,0}(\text {Gr}(n,N),d)\) with no marking. We denote by \(F'_d\) the fixed-point component of \(QG^{0+}_{0,0}\) parametrizing the quasimaps of degree d

$$\begin{aligned} (\mathbb {P}^1,E,s) \end{aligned}$$

with E a vector bundle of rank n and degree d, and \(s:\mathbb {P}^1\rightarrow E\otimes \mathcal {O}^{\oplus N}_{\mathbb {P}^1}\) a section such that \(s(x)\ne 0\) for \(x\ne 0\in \mathbb {P}^1\) and \(0\in \mathbb {P}^1\) is a base point of length d. As explained in [17, §4.1], there is an evaluation morphism \(\rho : F_{d}\rightarrow \text {Gr}(n,N)\) at the generic point of \(\mathbb {P}^{1}\).

There is an obvious isomorphism between \(F_{d}'\) and \(F_{d}\) that identifies the universal N-pairs over their trivial universal curves. Hence, the determinant line bundles defined by (54) are the same for both spaces under the obvious isomorphism. We can also identify \(\rho\) with \(\mathrm {ev}_{\infty }\). By abuse of notation, we will use the notation \(F_{d}\) to denote both distinguished \(\mathbb {C}^{*}\)-fixed point loci. Let \(N^{\mathrm {vir}}_{F_{d}/QG^{0+}_{0,0}}\) be the virtual normal bundle of \(F_{d}\) in \(QG^{0+}_{0,0}\), i.e., the moving part of the restriction of the absolute perfect obstruction theory of \(QG^{0+}_{0,0}\) induced by (58). In the computation of \(N^{\mathrm {vir}}_{F_{d}/QG^{0+}_{0,0}}\), the contribution from the automorphisms moving the unmarked points at 0 and \(\infty\) cancels with that of the deformation of the parametrization \(\varphi\). Hence we have \(N^{\mathrm {vir},\text {rel}}_{F_{d}/QG^{0+}_{0,1}}\cong N^{\mathrm {vir}}_{F_{d}/QG^{0+}_{0,0}}\). In sum, we can use \(F_{d'}\) and \(QG^{0+}_{0,0}(\text {Gr}(n,N),d')\) to compute \(\mu ^{W_1}_{d'}(q)\).

Let \(\pi :\mathcal {C}\rightarrow QG^{0+}_{0,0}(\text {Gr}(n,N),d)\) be the universal curve and let \(\mathcal {O}^{\oplus N}_{\mathcal {C}}\rightarrow \mathcal {E}\) be the universal N pair. Recall that \(\rho : F_{d}\rightarrow \text {Gr}(n,N)\) is the evaluation map at the generic point of \(\mathbb {P}^{1}\). The K-theoretic small I-function of \(\text {Gr}(n,N)\) of level l is defined by

$$\begin{aligned} \mathcal {I}^{l}(q,Q)=1+\sum _{d>0}Q^d\rho _{*}\bigg (\mathcal {O}_{F_d}^{\text {vir}}\otimes \bigg (\frac{\mathcal {D}^{l}}{\lambda _{-1}^{\mathbb {C}^*}(N^{\mathrm {vir},\vee }_{F_{d}/QG^{0+}_{0,0}})}\bigg )\bigg )\otimes \text {det}^{-l}(S), \end{aligned}$$

where

  • Q is a formal variable called the Novikov variable,

  • \(\mathcal {D}^{l}\) is the restriction of the level-l determinant line bundle \((\text {det}\,R\pi _*(\mathcal {E}))^{-l}\) to \(F_{d}\),

  • \(N^{\mathrm {vir},\vee }_{F_{d}/QG^{0+}_{0,0}}\) denotes the dual of the virtual normal bundle \(N^{\mathrm {vir}}_{F_{d}/QG^{0+}_{0,0}}\), and

  • S is the tautological subbundle over \(\text {Gr}(n,N)\).

Since \(\mathbb {C}^{*}\) acts trivially on \(F_{d}\), we have \(K_{0}^{\mathbb {C}^{*}}(F_{d})=K_{0}(F_{d})[q,q^{-1}]\). By definition, \(\mathcal {I}^{l}(q,Q)\) is a formal power series in Q and the coefficient of \(Q^{i}, i>0\) is a \(K^{0}(\mathrm {Gr}(n,N))\)-valued rational function in q.

Now let us give explicit descriptions of \(QG^{0+}_{0,0}(\text {Gr}(n,N),d)\) and \(F_{d}\). Let \(\text {Quot}_{\mathbb {P}^1,d}(\mathbb {C}^N,N-n)\) be the Grothendieck’s Quot scheme parametrizing quotients \(\mathcal {O}^{\oplus N}_{\mathbb {P}^1}\rightarrow Q\rightarrow 0\), where Q is a coherent sheaf on \(\mathbb {P}^{1}\) of rank \(N-n\) and degree d. Let X be a scheme. Suppose \(\mathcal {O}^{\oplus N}_{\mathbb {P}^1\times X}\rightarrow {\tilde{Q}}\rightarrow 0\) is a flat quotient over \(\mathbb {P}^1\times X\). The kernel \(\mathcal {K}\) of the quotient map is locally free due to flatness. Let \(\mathcal {E}\) be the dual of \(\mathcal {K}\). By dualizing the injection \(0\rightarrow \mathcal {K}\rightarrow \mathcal {O}^{\oplus N}_{\mathbb {P}^1\times X}\), we obtain a morphism \(\mathcal {O}^{\oplus N}_{\mathbb {P}^1\times X}\rightarrow \mathcal {E}\) satisfying that, for any closed point \(x\in X\), the restriction of the morphism to \(\mathbb {P}^1\times \{x\}\) is surjective at all but a finite number of points. It is easy to check that \(\mathcal {O}^{\oplus N}_{\mathbb {P}^1\times X}\rightarrow \mathcal {E}\) is a flat family of quasimaps with one parametrized rational component. Therefore, we obtain a morphism from \(\text {Quot}_{\mathbb {P}^1,d}(\mathbb {C}^N,N-n)\) to \(QG^{0+}_{0,0}(\text {Gr}(n,N),d)\). In fact, this morphism is an isomorphism. Indeed, for any quasimap \((C',E,s,\varphi )\) in \(QG^{0+}_{0,0}(\text {Gr}(n,N),d)\), the underlying curve must be \(\mathbb {P}^1\) due to the stability condition. In sum, we have an isomorphism

$$\begin{aligned} QG^{0+}_{0,0}(\text {Gr}(n,N),d)\cong \text {Quot}_{\mathbb {P}^1,d}(\mathbb {C}^N,N-n). \end{aligned}$$

Note that the above Quot scheme is a smooth, projective variety. Hence its virtual structure sheaf is the same as the structure sheaf.

The distinguished \(\mathbb {C}^*\)-fixed-point loci \(F_d\) is explicitly identified in [8]. Consider a collection of integers \(\{d_i\}_{1\le i\le n}\) which satisfies

$$\begin{aligned} \sum d_i=d\quad \text {and}\quad 0\le d_1\le d_2\le \dots \le d_n. \end{aligned}$$
(61)

Suppose \(0\le d_1=\dots =d_{n_1}<d_{n_1+1}=\dots =d_{n_2}<\dots <d_{n_{j}+1}=\dots =d_{n}\). Then the jumping index of \(\{d_i\}\) is defined as the collection of integers \(\{n_i\}_{1\le i\le j}\). According to [8, Lemma 1.2], the irreducible components of \(F_d\) are indexed by collections of integers satisfying (61). More precisely, the irreducible components of \(F_d\) are the images of flag varieties:

$$\begin{aligned} \iota _{\{d_i\}}:\text {Fl}(n_1,\dots ,n_j;S)\hookrightarrow \text {Quot}_{\mathbb {P}^1,d}(\mathbb {C}^N,N-n). \end{aligned}$$

Here \(\text {Fl}(n_1,\dots ,n_j;S)\) denotes the relative flag variety of type \(\{n_i\}\) and we refer the reader to [8, §1] for the precise definition of the embedding \(\iota _{\{d_i\}}\). The (restriction of) evaluation map \(\rho : F_{d}\rightarrow \text {Gr}(n,N)\) can be identified with the flag bundle map \(\text {Fl}(n_1,\dots ,n_j;S)\rightarrow \text {Gr}(n,N)\).

Consider the universal sequence of sheaves on \(\text {Quot}:=\text {Quot}_{\mathbb {P}^1,d}(\mathbb {C}^N,N-n)\):

$$\begin{aligned} 0\rightarrow \mathcal {K}\rightarrow \mathbb {C}^N\otimes \mathcal {O}_{\text {Quot}\times \mathbb {P}^1}\rightarrow \mathcal {Q}\rightarrow 0. \end{aligned}$$

Let \(\pi :\text {Quot}\times \mathbb {P}^1\rightarrow \text {Quot}\) be the projection. For simplicity, we denote \(\text {Fl}:=\text {Fl}(n_1,\dots ,n_j;S)\) and set \(n_{j+1}:=n\). Let \(\rho :\text {Fl}\rightarrow \text {Gr}(n,N)\) be the flag bundle map and let

$$\begin{aligned} 0\subset S_{n_1}\subset S_{n_2}\subset \dots \subset S_{n_j}\subset S_{n_j+1} =\rho ^*S \end{aligned}$$

be the universal flag on \(\text {Fl}\). Let \(z=\mathrm {Fl}\times 0\subset \mathrm {Fl}\times \mathbb {P}^1\). According to [8], the restriction of \(\mathcal {K}\) from \(\text {Quot}\times \mathbb {P}^1\) to \(\text {Fl}\times \mathbb {P}^1\) has an increasing filtration \(0=\mathcal {K}_0\subset \dots \subset \mathcal {K}_j\subset \mathcal {K}_{j+1}=\mathcal {K}\) with

$$\begin{aligned} \mathcal {K}_a/\mathcal {K}_{a-1}\cong \pi ^*(S_{n_a}/S_{n_{a-1}})(-d_{n_a}z). \end{aligned}$$

Therefore, in the K-group \(K^0(\text {Fl}\times \mathbb {P}^1)\), we have

$$\begin{aligned}{}[\mathcal {K}^\vee ]=\sum _{a=1}^{j+1}[(S_{n_a}/S_{n_{a-1}})^\vee (d_{n_a})]. \end{aligned}$$
(62)

Using the splitting principle, we write \(\sum _{s=1}^{n_a-n_{a-1}}\mathcal {L}_{n_{a-1}+s}=(S_{n_a}/S_{n_{a-1}})^\vee .\)

To obtain the explicit formula of the small I-function of level l, we need to compute three factors: \(\det ^{-l}(S)\), \(\lambda _{-1}^{\mathbb {C}^*}(N^\vee _{\text {Fl}/\text {Quot}})\), and \(\mathcal {D}^{l}\). First, we have

$$\begin{aligned} \mathrm {det}^{-l}(S)=\prod _{a=1}^{j+1}\prod _{s=1}^{n_a-n_{a-1}}(\mathcal {L}_{n_{a-1}+s})^l. \end{aligned}$$

Second, according to [8, §1], the tangent bundle \(T_{\mathrm {Quot}}\) of the Quot scheme is given by \(\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {Q})\), and it fits into the following long exact sequence:

$$\begin{aligned} 0\rightarrow \pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K})\rightarrow \pi _{*}\mathcal {K}^{\vee }\otimes \mathbb {C}^{N}\rightarrow T_{\mathrm {Quot}}\rightarrow R^{1}\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K})\rightarrow 0. \end{aligned}$$

By restricting the above exact sequence to \(\mathrm {Fl}\) and then taking the \(\mathbb {C}^{*}\)-moving parts, we obtain the following identity in \(K^{0}_{\mathbb {C}^{*}}(\mathrm {Fl})\):

$$\begin{aligned}{}[N_{\text {Fl}/\text {Quot}}]=[(\pi _{*}\mathcal {K}^{\vee }\otimes \mathbb {C}^{N})|_{\mathrm{Fl}}^{\mathrm{mv}}]+[(R^{1}\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K}))|_{\mathrm{Fl}}^{\mathrm{mv}}]-[(\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K}))|_{\mathrm{Fl}}^{\mathrm{mv}}]. \end{aligned}$$

Here, the superscript “mv” denotes taking the moving part. By the definition of the \(\mathbb {C}^{*}\)-action (52), it is straightforward to check that the \(\mathbb {C}^{*}\)-weights of \(H^{0}(\mathbb {P}^{1},\mathcal {O}_{\mathbb {P}^{1}}(d))\) are \(1,q^{-1},q^{-2},\dots ,q^{-d}\) for \(d\ge 0\) and the \(\mathbb {C}^{*}\)-weights of \(H^{1}(\mathbb {P}^{1},\mathcal {O}_{\mathbb {P}^{1}}(-d))\) are \(q,q^{2},\dots ,q^{d-1}\) for \(d>0\). Using this fact and the decomposition (62), we can easily check:

$$\begin{aligned}{}[(\pi _{*}\mathcal {K}^{\vee }\otimes \mathbb {C}^{N})|_{\mathrm{Fl}}^{\mathrm{mv}}]&=N\sum _{a=1}^{j+1}\sum _{s=1}^{r_a}\sum _{b=1}^{d_{n_a}}(\mathcal {L}_{n_{a-1}+s}q^{-b}), \\ [(\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K}))|_{\mathrm{Fl}}^{\mathrm{mv}}]&=\sum _{1\le a<b\le j+1}\sum _{\substack{1\le s\le r_{a} \\ 1\le t\le r_{b}}} \sum _{i=1}^{d_{ba}}\mathcal {L}_{n_{b-1}+t}\mathcal {L}^{\vee }_{n_{a-1}+s}q^{-i}, \\ [(R^{1}\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K}))|_{\mathrm{Fl}}^{\mathrm{mv}}]&=\sum _{1\le a<b\le j+1}\sum _{\substack{1\le s\le r_{a}\\1\le t\le r_{b}}} \sum _{i=1}^{d_{ba}-1}\mathcal {L}_{n_{b-1}+t}^{\vee }\mathcal {L}_{n_{a-1}+s}q^{i}, \end{aligned}$$

where \(r_a:=n_a-n_{a-1}\) and \(d_{ba}:=d_{n_b}-d_{n_a}\). Note thatFootnote 5

$$\begin{aligned} \begin{aligned} \frac{\lambda ^{\mathbb {C}^{*}}_{-1}([(\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K}))|_{\mathrm{Fl}}^{\mathrm{mv}}])}{\lambda ^{\mathbb {C}^{*}}_{-1}([(R^{1}\pi _{*}(\mathcal {K}^{\vee }\otimes \mathcal {K}))|_{\mathrm{Fl}}^{\mathrm{mv}}])}&=\frac{\prod _{1\le a<b\le j+1}\prod _{\substack{ 1\le s\le r_{a} \\ 1\le t\le r_{b}}}\prod _{i=1}^{d_{ba}}(1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}q^{d_{i}})}{\prod _{1\le a<b\le j+1}\prod _{\substack{1\le s\le r_{a} \\ 1\le t\le r_{b} }}\prod _{i=1}^{d_{ba}-1}(1-\mathcal {L}_{n_{b-1}+t}\mathcal {L}_{n_{a-1}+s}^{\vee }q^{d_{-i}})} \\&={\prod _{1\le a<b\le j+1}\prod _{\begin{subarray}{c} 1\le s\le r_{a} \\ 1\le t\le r_b \end{subarray}}\prod _{c=1}^{d_{ba}-1}\mathcal {L}^\vee _{n_{b-1}+s}\mathcal {L}_{n_{a-1}+t}q^{c}} \\&\quad \cdot \prod _{1\le a<b\le j+1}\prod _{\substack{1\le s\le r_{a} \\ 1\le t\le r_{b}}}(-1)^{r_ar_b(d_{ba}-1)}(1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}q^{d_{ba}}). \end{aligned} \end{aligned}$$
(63)

Hence, we obtain

$$\begin{aligned} \frac{1}{\lambda ^{\mathbb {C}^{*}}_{-1}(N^\vee _{\text {Fl}/\text {Quot}})}&={\prod _{1\le a<b\le j+1}\prod _{\substack{ 1\le s\le r_{a} \\ 1\le t\le r_b}}\prod _{c=1}^{d_{ba}-1}\mathcal {L}^\vee _{n_{b-1}+s}\mathcal {L}_{n_{a-1}+t}q^{c}} \\&\quad \cdot \frac{\prod _{1\le a<b\le j+1}\prod _{\substack{ 1\le s\le r_{a} \\ 1\le t\le r_{b}}}(-1)^{r_ar_b(d_{ba}-1)}(1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}q^{d_{ba}})}{\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=1}^{d_{n_a}}(1-\mathcal {L}^\vee _{n_{a-1}+s}q^b)^N}. \end{aligned}$$

Finally, recall that \(\mathcal {E}=\mathcal {K}^\vee\). Then it follows from the definition \(\mathcal {D}^{l}=\det ^{-l}R\pi _*(\mathcal {E})\) that

$$\begin{aligned} \mathcal {D}^{l}=\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=0}^{d_{n_a}}(\mathcal {L}^\vee _{n_{a-1}+s}q^b)^l. \end{aligned}$$

The last ingredient that we need to recall is the pushforward lemma [65, Lemma 6]:

$$\begin{aligned} \rho _{*}([\mathcal {F}])=\sum _{w}w\left( \frac{[\mathcal {F}]}{\lambda ^{\mathbb {C}^{*}}_{-1}(T_{\rho }^{\vee })} \right) , \end{aligned}$$
(64)

where \(\mathcal {F}\) is a Laurent polynomial in \(\mathcal {L}_{i}\)’s, \(T_{\rho }^{\vee }\) is the relative conormal bundle, and the summation is over all \(w\in S_n/(S_{r_1}\times \dots \times S_{r_{j+1}})\), which acts on the indices of \(\mathcal {L}_{i}\)’s. We have

$$\begin{aligned}{}[T_{\rho }^{\vee }]=\sum _{1\le a<b\le j+1}\sum _{\substack{ 1\le s\le r_a \\ 1\le t\le r_b}}\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}. \end{aligned}$$

Combining all the above results, we obtain

$$\begin{aligned}\mathcal {I}^{l}(q,Q)&=\sum _{d\ge 0}Q^d\sum _{\substack{ \{d_i\} \\ \sum d_i=d}}\rho _*\bigg (\frac{\mathcal {D}^{l}}{\lambda ^{\mathbb {C}}_{-1}(N^\vee _{\text {Fl}/\text {Quot}})}\bigg )\otimes \mathrm {det}^{-l}(S) \\ &=\sum _{d\ge 0}Q^d\sum _{\substack{\{d_i\} \\ \sum d_i=d }}\rho _*\Bigg (\prod _{1\le a<b\le j+1}\prod _{\substack{ 1\le s\le r_a \\ 1\le t\le r_b}}\prod _{c=1}^{d_{ba}-1}\mathcal {L}^\vee _{n_{b-1}+t}\mathcal {L}_{n_{a-1}+s}q^{c}\nonumber \\&\quad\cdot \prod _{1\le a<b\le j+1}\prod _{\substack{ 1\le s\le r_a \\ 1\le t\le r_b}}(-1)^{r_ar_b(d_{ba}-1)}(1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}q^{d_{ba}})\nonumber \\&\quad \cdot \frac{\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=0}^{d_{n_a}}(\mathcal {L}^\vee _{n_{a-1}+s}q^b)^l }{\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=1}^{d_{n_a}}(1-\mathcal {L}^\vee _{n_{a-1}+s}q^b)^N}\Bigg )\otimes \mathrm {det}^{-l}(S) \\ &=\sum _{d\ge 0}Q^d\sum _{\substack{\{d_i\} \\ \sum d_i=d}}\sum _{w}\Bigg (\prod _{1\le a<b\le j+1}\prod _{\substack{1\le s\le r_a \\ 1\le t\le r_b }}\prod _{c=1}^{d_{ba}-1}\mathcal {L}^\vee _{n_{b-1}+t}\mathcal {L}_{n_{a-1}+s}q^{c}\nonumber \\&\quad \cdot \prod _{1\le a<b\le j+1}\prod _{\substack{ 1\le s\le r_a \\ 1\le t\le r_b }}(-1)^{r_ar_b(d_{ba}-1)} \frac{1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}q^{d_{ba}}}{1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}} \\&\quad \cdot \frac{\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=1}^{d_{n_a}}(\mathcal {L}^\vee _{n_{a-1}+s}q^b)^l }{\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=1}^{d_{n_a}}(1-\mathcal {L}^\vee _{n_{a-1}+s}q^b)^N} \Bigg ). \end{aligned}$$

In the last step, we use the identity

$$\begin{aligned} \frac{1}{1-\mathcal {L}^{\vee }_{i}q^{b}}=\sum _{m=0}^{\dim \mathrm {Fl}}\frac{q^{bm}}{(1-q^{b})^{m+1}} (\mathcal {L}^{\vee }_{i}-1)^{m} \end{aligned}$$

to remove the K-theory classes from the denominators and then apply the pushforward formula (64).

Note that we write the I-function in a way that all the exponents of q are positive. This will be convenient for the proof of Lemma A.1 below. If we allow negative exponents, the I-function can be written in a more symmetric way, see formulas (4.44) and (4.45) in [69].

Let \(W_1=\mathbb {S}_{\lambda ^*}(S)\) with \(\lambda \in \text {P}_l\). Recall in the proof of Theorem 6.13, we need to study

$$\begin{aligned} \mu ^{W_1}_{d'}(q)=(\text {ev}_\infty )_*\bigg (\frac{\mathcal {D}^l\otimes \widetilde{\text {ev}}_0^*(\mathbb {S}_{\lambda ^*}(S))}{\lambda _{-1}^{\mathbb {C}^*}(N^\vee )}\bigg )\otimes \text {det}^{-l}(S), \end{aligned}$$

where \(N=N^{\mathrm {vir},\text {rel}}_{F_{d'}/QG^{0+}_{0,1}}\) and \(\widetilde{\text {ev}}_0:F_{d'}\rightarrow [M_{n\times N}/\text {GL}_n(\mathbb {C})]\) is the evaluation morphism at \(0\in \mathbb {P}^1\). By the discussion at the beginning of this appendix, we can compute \(\mu ^{W_1}_{d'}(q)\) via \(QG^{0+}_{0,0}\) and \(F_{d'}\cong \mathrm {Fl}\). Recall that the evaluation map \(\mathrm {ev}_{\infty }\) is identified with the flag bundle map \(\rho : F_{d'}\rightarrow \text {Gr}(n,N)\). Hence, by definition, the difference between \(\mu ^{W_1}_{d'}(q)\) and the degree-\(d'\) term of the I-function \(\mathcal {I}^{l}(q,Q)\) is the insertion \(\widetilde{\text {ev}}_0^*(\mathbb {S}_{\lambda ^*}(S))\).

Note that \(\widetilde{\text {ev}}_0^*(\mathbb {S}_{\lambda ^*}(S))=\mathbb {S}_{\lambda ^*}(\mathcal {K}_0)\), where \(\mathcal {K}_0\) denotes the restriction of \(\mathcal {K}\) to \(\text {Fl}\times \{0\}\). By the analysis of the I-function, we obtain the explicit formula of \(\mu ^{W_1}_{d'}(q)\) as follows:

$$\begin{aligned} \begin{aligned}\mu ^{W_1}_{d'}(q) &=\sum _{\substack{ \{d_i\} \\ \sum d_i=d' }}\sum _{w}\Bigg ( \prod _{1\le a<b\le j+1}\prod _{\substack{ 1\le s\le r_a \\ 1\le t\le r_b}}\prod _{c=1}^{d_{ba}-1}\mathcal {L}^\vee _{n_{b-1}+t}\mathcal {L}_{n_{a-1}+s}q^{c} \\&\quad \cdot \prod _{1\le a<b\le j+1}\prod _{\substack{1\le s\le r_a \\ 1\le t\le r_b }}(-1)^{r_ar_b(d_{ba}-1)} \frac{1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}q^{d_{ba}}}{1-\mathcal {L}_{n_{b-1}+t}^\vee \mathcal {L}_{n_{a-1}+s}} \\&\quad \cdot \frac{\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=1}^{d_{n_a}}(\mathcal {L}^\vee _{n_{a-1}+s}q^b)^l }{\prod _{a=1}^{j+1}\prod _{s=1}^{r_a}\prod _{b=1}^{d_{n_a}}(1-\mathcal {L}^\vee _{m_{a-1}+s}q^b)^N} \cdot \mathbb {S}_{\lambda ^*}(\mathcal {K}_0)\Bigg ). \end{aligned} \end{aligned}$$
(65)

Note that the \(\mathbb {C}^*\)-action (52) on the fiber of \(\mathcal {O}_{\mathbb {P}^1}(-d)\) at 0 is given by the dth tensor power of the standard representation. Hence, \(\mathcal {K}_0\) can be explicitly written as follows:

$$\begin{aligned} \mathcal {K}_0=\sum _{a=1}^{j+1}\sum _{s=1}^{r_{a}}\mathcal {L}^\vee _{n_{a-1}+s}q^{d_{n_a}}. \end{aligned}$$
(66)

Lemma A.1

If \(N-n\ge 2l\), then \(\mu ^{W_1}_{d'}(q)\) is regular at \(q=0\) and vanishes at \(q=\infty\).

Proof

It is clear that \(\mu ^{W_1}_{d'}(q)\) has no pole at \(q=0\). For any \(\lambda \in \text {P}_l\), \(\mathbb {S}_{\lambda ^*}(\mathcal {K}_0)\) is a polynomial in q whose degree is bounded above by \(ld'\). For a fixed choice of \(\{d_i\}\) and w, the degree of the numerator of (65) in q is bounded by

$$\begin{aligned} \begin{aligned}&\sum _{1\le a<b\le j+1}r_ar_bd_{ba} +\sum _{1\le a<b\le j+1}r_ar_b(d_{ba}-1)d_{ba}/2 +\sum _{a=1}^{j+1}r_a(d_{n_a}+1)d_{n_a}l/2+ld' \\&\quad =\sum _{1\le a<b\le j+1}r_ar_b(d_{ba}+1)d_{ba}/2 +\sum _{a=1}^{j+1}r_a(d_{n_a}+1)d_{n_a}l/2+ld' \end{aligned} \end{aligned}$$
(67)

and the degree of the denominator in q is

$$\begin{aligned} \sum _{a=1}^{j+1}r_a(d_{n_a}+1)d_{n_a}N/2. \end{aligned}$$
(68)

Using \(\sum _{a<b}r_{a}\le n-1\) and \(0<d_{ba}\le d_{n_{b}}\), we obtain the following inequalities for the first term of the RHS of (67):

$$\begin{aligned}\sum _{1\le a<b\le j+1}r_ar_b(d_{ba}+1)d_{ba}/2& \le \sum _{1\le a<b\le j+1}r_{a}r_{b}(d_{n_{b}}+1)d_{n_{b}}/2 \\& \le \frac{n-1}{2}\sum _{1\le b\le j+1}r_{b}(d_{n_{b}}+1)d_{n_{b}}. \end{aligned}$$

It follows that the difference (68)−(67) is greater than or equal to

$$\begin{aligned} \sum _{a=1}^{j+1}r_a(d_{n_a}+1)d_{n_a}(N-l-(n-1))/2-ld'. \end{aligned}$$
(69)

Since

$$\begin{aligned} \sum _{a=1}^{j+1}r_a(d_{n_a}+1)d_{n_a}\ge 2 \sum _{a=1}^{j+1}d_{n_a}=2d', \end{aligned}$$

Formula (69) is bounded below by

$$\begin{aligned}&d'(N-l-(n-1))-ld' \\&\quad =d'(N-2l-(n-1)) \\&\quad >0. \end{aligned}$$

Hence, \(\mu ^{W_1}_{d'}(q)\) vanishes at \(q=\infty\) under the assumption that \(N-n\ge 2l\). \(\square\)

Remark A.2

Recall there is a distinguished marked point \(x_{0}\) on the curve C. As explained in Remark 6.6, the factor \(\big (\text {det}\,\mathcal {E}_{x_0}\big )^{e^*}\) in the definition of the \((\epsilon =0+)\)-stable GLSM invariant can be viewed as the pullback of the K-theory class \(\text {det}(E)^{e^*}\) via the stacky evaluation map \(\widetilde{\text {ev}}_0:\overline{\mathcal {M}}^{\epsilon =0+}_{C,k}(\text {Gr}(n,N),d)\rightarrow [M_{n\times N}/\text {GL}_n(\mathbb {C})]\). In principle, one can study the wall-crossing converting the distinguished marked point \(x_{0}\) to a heavy point so that we obtain quantum K-invariants in the more classical sense. In the following discussion, we will use the same notation as in Sect. 6.2. If we carry out the computations as in the proof of Theorem 6.13, we will find that the wall-crossing contributions are determined by residues of classes of the form

$$\begin{aligned} \frac{\widetilde{\text {ev}}_0^*(\mu ^{\det }_{d'}(q))}{1-q^{-1}L}\otimes \mathcal {G}, \end{aligned}$$
(70)

where L is a cotangent line bundle, \(\mathcal {G}\) is some K-theory class constant in q, and

$$\begin{aligned} \mu ^{\det }_{d'}(q)=(\text {ev}_\infty )_*\bigg (\frac{\mathcal {D}^l\otimes \widetilde{\text {ev}}_0^*( \text {det}(E)^{e^*})}{\lambda _{-1}^{\mathbb {C}^*}(N^\vee )}\bigg ). \end{aligned}$$

Note that \(\widetilde{\text {ev}}_0^*( \text {det}(E)^{e^*})= \text {det}(\mathcal {K}_{0})^{-e^*}\), where \(\mathcal {K}_{0}\) is given by (66). Hence, we have

$$\begin{aligned} \widetilde{\text {ev}}_0^*( \text {det}(E)^{e^*})=\bigg (\prod _{a=1}^{j+1}\prod _{s=1}^{r_{a}}\mathcal {L}^{e^*}_{n_{a-1}+s}\bigg )q^{-e^*\sum _{a}r_{a}d_{n_a}}. \end{aligned}$$

Unlike \(\mu ^{W_1}_{d'}(q)\) in Lemma A.1, the above expression is not regular at \(q=0\), and therefore, the residue of (70) is not necessarily equal to zero. It will be interesting to explicitly compute these contributions.

The above analysis also explains why we choose insertions of the form \({\mathbb {S}}_{\lambda ^*}(S)\) instead of \({\mathbb {S}}_{\lambda }(S^\vee )\) at the ordinary markings. The pullback of the latter class along the stacky evaluation map has negative \({\mathbb {C}}^*\)-weights and therefore the wall-crossing of weighted stability may change its invariants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Y., Zhang, M. Verlinde/Grassmannian Correspondence and Rank 2 \(\delta\)-Wall-Crossing. Peking Math J 6, 217–306 (2023). https://doi.org/10.1007/s42543-021-00046-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-021-00046-6

Keywords

Mathematics Subject Classification

Navigation