Skip to main content
Log in

The Arithmetic Version of the Frequency Transition Conjecture: New Proof and Generalization

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

The arithmetic version of the frequency transition conjecture for the almost Mathieu operators was recently proved by Jitomirskaya and Liu [34]. We give a new proof via reducibility theory and duality, which derives from the method developed in [22] (in fact it is a simplified version). This new proof is applicable to more general quasiperiodic operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Pure point spectrum with exponentially decaying eigenfunctions.

  2. Denote by

    $$\begin{aligned} \delta (\alpha ,\theta )=\limsup \limits _{k\rightarrow \infty }-\frac{\ln \Vert 2\theta +k\alpha \Vert _{{{\mathbb {R}}}/{{\mathbb {Z}}}}}{|k|}. \end{aligned}$$

    The original conjecture is for the set of \(\theta\) with \(\delta (\alpha ,\theta )=0\) which contains a zero Lebesgue measure set more than the set of \(\alpha\)-Diophantine \(\theta\).

  3. We refer readers to Lemma 3.2 in [22] for the proof of the second inequality.

References

  1. Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. In: Group Theoretical Methods in Physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979), Ann. Israel Phys. Soc., Vol. 3, Hilger, Bristol, pp. 133–164 (1980)

  2. Avila, A.: The absolutely continuous spectrum of the almost Mathieu operator, arXiv:0810.2965

  3. Avila, A.: Global theory of one-frequency Schrödinger operators. Acta Math. 215(1), 1–54 (2015)

    Article  MathSciNet  Google Scholar 

  4. Avila, A.: Almost reducibility and absolute continuity. preprint. https://w3.impa.br/~avila/arac.pdf

  5. Avila, A.: KAM, Lyapunov exponent and the spectral dichotomy for one-frequency Schrödinger operators. in preparation

  6. Avila, A., Fayad, B., Krikorian, R.: A KAM Scheme for SL(2,\(\mathbb{R}\)) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

    Article  MathSciNet  Google Scholar 

  7. Avila, A., Jitomirskaya, S.: The Ten Martini Problem. Ann. Math. 170(1), 303–342 (2009)

    Article  MathSciNet  Google Scholar 

  8. Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc. (JEMS) 12(1), 93–131 (2010)

    Article  MathSciNet  Google Scholar 

  9. Avila, A., Jitomirskaya, S., Marx, C.: Spectral theory of extended Harper’s model and a question by Erdős and Szekeres. Invent. Math. 210(1), 283–339 (2017)

    Article  MathSciNet  Google Scholar 

  10. Avila, A., You, J.G., Zhou, Q.: Sharp phase transitions for the almost Mathieu operator. Duke Math. J. 166(14), 2697–2718 (2017)

    Article  MathSciNet  Google Scholar 

  11. Avila, A., You, J.G., Zhou, Q.: Dry Ten Martini Problem for noncritical almost Mathieu operator. in preparation

  12. Avron, J., Osadchy, D., Seiler, R.: A topological look at the quantum Hall effect. Physics Today 56(8), 38–42 (2003)

    Article  Google Scholar 

  13. Avron, J., Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. Am. Math. Soc. (N.S.) 6(1), 81–85 (1982)

    Article  MathSciNet  Google Scholar 

  14. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, Vol. 158, Princeton University Press, Princeton, NJ (2005)

    Google Scholar 

  15. Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential. Ann. of Math. (2) 152(3), 835–879 (2000)

    Article  MathSciNet  Google Scholar 

  16. Bourgain, J., Jitomirskaya, S.: Anderson localization for the band model. In: Milman V.D., Schechtman G. (eds.) Geometric Aspects of Functional Analysis, Lecture Notes in Math, Vol. 1745. Springer, Berlin, pp. 67–79 (2000)

    Chapter  Google Scholar 

  17. Bourgain, J., Jitomirskaya, S.: Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math. 148(3), 453–463 (2002)

    Article  MathSciNet  Google Scholar 

  18. Chulaevsky, V., Dinaburg, E.: Methods of KAM-theory for long-range quasi-periodic operators on \(\mathbf{Z}^{\mu}\), Pure point spectrum. Commun. Math. Phys. 153(3), 559–577 (1993)

    Article  MathSciNet  Google Scholar 

  19. Eliasson, L.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179(2), 153–196 (1997)

    Article  MathSciNet  Google Scholar 

  20. Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1), 5–25 (1990)

    Article  Google Scholar 

  21. Ge, L.R., Kachkovskiy, I.: Ballistic transport for one-dimensional quasiperiodic Schrödinger operators. arXiv:2009.02896 (to appear in Comm. Pure Appl. Math.)

  22. Ge, L.R., You, J.G.: Arithmetic version of Anderson localization via reducibility. Geom. Funct. Anal. 30(5), 1370–1401 (2020)

    Article  MathSciNet  Google Scholar 

  23. Ge, L.R., You, J.G., Zhao, X.: Hölder regularity of the integrated density of states for quasi-periodic long-range operators on \(\ell^2(\mathbb{Z}^d)\). arXiv:2009.08004 (to appear in Commun. Math. Phys.)

  24. Ge, L.R., You, J.G., Zhou, Q.: Exponential dynamical localization: Criterion and applications. arXiv:1901.04258 (to appear in Ann. Sci. Éc. Norm. Supér. (4))

  25. Gordon, A.Y.: The point spectrum of one-dimensional Schrödinger operators. Uspekhi Mat. Nauk. 31(4), 257–258 (1976)

    MathSciNet  Google Scholar 

  26. Gordon, A.Y., Jitomirskaya, S., Last, Y., Simon, B.: Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 178(2), 169–183 (1997)

    Article  MathSciNet  Google Scholar 

  27. Herman, M.-R.: Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58(3), 453–502 (1983)

    Article  MathSciNet  Google Scholar 

  28. Hou, X.J., You, J.G.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)

    Article  MathSciNet  Google Scholar 

  29. Jitomirskaya, S.: Anderson localization for the almost Mathieu equation: a nonperturbative proof. Commun. Math. Phys. 165(1), 49–57 (1994)

    Article  MathSciNet  Google Scholar 

  30. Jitomirskaya, S.: Almost everything about the almost Mathieu operator, II. In: XI Internat. Congress of Math. Physics (Paris, 1994), Int. Press, Cambridge, MA, pp. 373–382 (1995)

  31. Jitomirskaya, S.: Metal-insulator transition for the almost Mathieu operator. Ann. of Math. (2) 150(3), 1159–1175 (1999)

  32. Jitomirskaya, S.: Singular continuous spectrum for critical almost Mathieu operators. To appear in Adv. Math.

  33. Jitomirskaya, S., Kachkovskiy, I.: L2-reducibility and localization for quasi-periodic operators. Math. Res. Lett. 23(2), 431–444 (2016)

    Article  MathSciNet  Google Scholar 

  34. Jitomirskaya, S., Liu, W.C.: Universal hierarchical structure of quasi-periodic eigenfunctions. Ann. of Math. (2) 187(3), 721–776 (2018)

    Article  MathSciNet  Google Scholar 

  35. Jitomirskaya, S., Liu, W.C.: Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase. arXiv:1802.00781

  36. Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators. Commun. Math. Phys. 165(1), 201–205 (1994)

    Article  Google Scholar 

  37. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84(3), 403–438 (1982)

    Article  MathSciNet  Google Scholar 

  38. Klein, S.: Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J. Funct. Anal. 218(2), 255–292 (2005)

    Article  MathSciNet  Google Scholar 

  39. Liu, W.C., Yuan, X.P.: Anderson localization for the almost Mathieu operator in the exponential regime. J. Spectr. Theory 5(1), 89–112 (2015)

    Article  MathSciNet  Google Scholar 

  40. Osadchy, D., Avron, J.E.: Hofstadter butterfly as quantum phase diagram. J. Math. Phys. 42(12), 5665–5671 (2001)

    Article  MathSciNet  Google Scholar 

  41. Peierls, R.: Zur theorie des diamagnetismus von leitungselektronen. Zeitschrift für Physik. 80(11–12), 763–791 (1933)

    Article  Google Scholar 

  42. Puig, J.: A nonperturbative Eliasson’s reducibility theorem. Nonlinearity 19(2), 355–376 (2006)

    Article  MathSciNet  Google Scholar 

  43. Simon, B.: Schrödinger operators in the twenty-first century. Math. Phys. 2000, 283–288 (2000)

    MATH  Google Scholar 

  44. Sinai, Ya.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46(5–6), 861–909 (1987)

    Article  Google Scholar 

  45. You, J.G., Zhou, Q.: Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications. Commun. Math. Phys. 323(3), 975–1005 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. You was partially supported by National Key R&D Program of China (No. 2020YFA0713300) and NSFC (No. 11871286). L. Ge and X. Zhao were partially supported by NSF DMS-1901462. L. Ge was partially supported by AMS-Simons Travel Grant 2020-2022. X. Zhao was partially supported by China Scholarship Council (No. 201906190072) and NSFC (No. 11771205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangong You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, L., You, J. & Zhao, X. The Arithmetic Version of the Frequency Transition Conjecture: New Proof and Generalization. Peking Math J 5, 349–364 (2022). https://doi.org/10.1007/s42543-021-00040-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-021-00040-y

Keywords

Mathematics Subject Classification

Navigation