Skip to main content
Log in

Global Steady Prandtl Expansion over a Moving Boundary I

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

This is the first of three papers in which we prove that steady, incompressible Navier–Stokes flows posed over the moving boundary, \(y = 0\), can be decomposed into Euler and Prandtl flows in the inviscid limit globally in \([1, \infty ) \times [0,\infty )\), assuming a sufficiently small velocity mismatch. In this part, sharp decay rates and self-similar asymptotics are extracted for both Prandtl and Eulerian layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is clear that by rescaling \(z \rightarrow (1-\delta )^{\frac{1}{2}}z\), we can replace the factor of \(1-\delta\) in front of \(\psi ''\) by simply 1. This rescaling would change the main linear operator, \((1-\delta ) \psi '' + \frac{z}{2} \psi '\) to \(\psi '' + \frac{z}{2} \psi '\). For notational ease, then, we work simply with the \(\psi ''\) instead of \((1-\delta )\psi ''\). The actual self-similar variable, then, is really \((1-\delta )\frac{\eta }{\sqrt{x}}\), but as \((1-\delta )\) is near 1, this causes no confusion in the analysis to follow.

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Elsevier, Kidlington (2003)

    MATH  Google Scholar 

  2. Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asano, A.: Zero viscosity limit of incompressible Navier–Stokes equations. In: Conference at the Fourth Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Kyoto (1991)

  4. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bricmont, J., Kupiainen, A., Lin, G.: Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Commun. Pure. Appl. Math. 47, 893–922 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dalibard, A.L., Masmoudi, N.: Phénomène de séparation pour l’équation de Prandtl stationnaire. Séminaire Laurent Schwartz—EDP et applications, pp. 1–18 (2014–2015)

  7. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, Z.: A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124(2), 591–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. E, Weinan: Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation. Acta Math. Sin. (Engl. Ser.) 16(2), 207–218 (2000)

  10. E, Weinan, Engquist, B.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50(12), 1287–1293 (1997)

  11. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  12. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Springer Monographs in Mathematics, Second edn. Springer, Berlin (2011)

    Google Scholar 

  13. Gerard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1273–1325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gerard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier–Stokes flows. arXiv:1607.06434v1 (2016)

  17. Gie, G.-M., Jung, C.-Y., Temam, R.: Recent progresses in the boundary layer theory. Discrete Contin. Dyn. Syst. A 36(5), 2521–2583 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Classics in Applied Mathematics. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  19. Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Guo, Y., Nguyen, T.: A note on the Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier–Stokes flows over a moving plate. Ann. PDE 3, 10 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hong, L., Hunter, J.: Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci. 1(2), 293–316 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220, 809–848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iyer, S.: Steady Prandtl boundary layer expansion of Navier–Stokes flows over a rotating disk. Arch. Ration. Mech. Anal. 224(2), 421–469 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Iyer, S.: Global steady Prandtl expansion over a moving boundary II. Peking Math. J. (to appear)

  29. Iyer, S.: Global steady Prandtl expansion over a moving boundary III. Peking Math. J. (to appear)

  30. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), pp. 85–98. Math. Sci. Res. Inst. Publ., vol. 2. Springer, New York (1984)

  31. Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.K.: On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kukavica, I., Vicol, V., Wang, F.: The van Dommelen and Shen singularity in the Prandtl equations. Adv. Math. 307, 288–311 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kundu, P., Cohen, I.: Fluid Mechanics, Third edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  35. Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maekawa, Y.: On the inviscid problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67, 1045–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Masmoudi, N., Wong, T.K.: Local in time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68, 1683–1741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mazzucato, A., Taylor, M.: Vanishing viscocity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1(1), 35–93 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  40. Oleinik, O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30, 951–974 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation, vol. 15. Chapman & Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

  42. Orlt, M.: Regularity for Navier–Stokes in domains with corners, Ph.D. Thesis (1998) (in German)

  43. Orlt, M., Sändig, A.M.: Regularity of viscous Navier–Stokes flows in nonsmooth domains. Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993). Lecture Notes in Pure and Applied Mathematics, vol. 167. Dekker, New York (1995)

  44. Prandtl, L.: Über flüssigkeitsbewegung bei sehr kleiner reibung. In: Verhandlungen des III Internationalen Mathematiker-Kongresses, Heidelberg. Teubner, Leipzig, pp. 484–491 [English Translation: Motion of fluids with very little viscosity. Technical Memorandum No. 452 by National Advisory Committee for Aeuronautics (1904)]

  45. Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  48. Serrin, J.: Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory. Proc. R. Soc. Lond. A 299, 491–507 (1967)

    Article  MATH  Google Scholar 

  49. Stein, E.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, 2nd edn. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  50. Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181(1), 88–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Yan Guo for many valuable discussions regarding this research. The author also thanks Bjorn Sandstede for introducing him to the paper [5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Iyer.

Additional information

This research was completed under partial support by NSF Grant 1209437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, S. Global Steady Prandtl Expansion over a Moving Boundary I. Peking Math J 2, 155–238 (2019). https://doi.org/10.1007/s42543-019-00011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-019-00011-4

Keywords

Navigation