Skip to main content

Advertisement

Log in

Changes in vegetation cover and soil intrinsic properties influence the soil bacterial community composition and diversity across different climatic regions of India

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Soil microbial community in forest ecosystems plays a significant role in carbon and nutrient cycling. Very little is known about the effect of vegetation cover on soil bacterial community composition and diversity across different climatic regions of India. Soil was sampled from the plant cover dominated by seasonal herbs and grasses (PAS), Pinus roxburghii Sarg (PIN), Abies pindrow L. (FIR), Quercus incana Roxb (OKF), Mitragyna parvifolia Roxb (MIK); Acacia nilotica L. and Salvadora spp. (MIA) in three different climatic regions (humid, moist sub-humid and semi-arid) of India. The soil physical, chemical and biological properties such as sand (SAN), silt (SIL), clay (CLY), bulk density (SBD), wilting point (SWP), field capacity (SFC), saturated hydraulic conductivity (SHC), pH (SpH), organic carbon (SOC), nitrogen (SN), C:N ratio, available phosphorous (SAP) and total microbial activity (SMA) were determined. Illumina sequencing of specific 16S rRNA gene was applied to identify bacterial community composition in the soils under different vegetation cover. Results showed that the soil properties varied under different vegetation cover across the different climatic regions. SOC, SN, SMA were highest in the moist sub-humid region sites (PAS, PIN) followed by humid region (OKF, FIR) and semi-arid region (MIK, MIA) sites. However, the Chao 1 (species richness), Shannon and Simpson index (diversity) were highest in OKF, followed by MIK, FIR, MIA, PIN and PAS. The predominant bacterial phyla and genera in the soils under different vegetation cover were Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Verrucomicrobia, Thermotogae and Geobacter, Methylocapsa, Sphingomonas, Pseudomonas, Erysipelotrichaceae_incertae_sedis, Sporotomaculum, Amorphus, Helicobacter, Paenibacillus, Bauldia, Skermanella, Methylosinus, Singulisphaera, Marinobacter and Lamprocystis. We also found the exclusive OTUs abundance of some bacterial phyla and genera in the soils, which were not correlated with any one of the studied soil variables. In our analysis, we found only the Firmicutes, Verrucomicrobia and Bacteroidetes are linearly correlated (P < 0.05) with CLY, SWP and SpH. Likewise, bacterial genera Methylocapsa, Methylosinus and Amorphus were linearly correlated (P < 0.05) with SIL, SpH, C:N ratio and SAP. Our results suggested that the type of vegetation cover has a significant impact on changes in soil properties, controlling the soil bacterial community composition and diversity across different climatic regions of India. The soil bacterial community composition and diversity may serve as a potential ecological indicator with respect to land use and land cover change on biogeochemical cycling processes across different climatic regions of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam G, Duncan H (2001) Development of sensitive and rapid method for the measurement of total microbial activity using fluroscein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951

    Article  CAS  Google Scholar 

  • Alexander L (2016) Global observed long-term changes in temperature and precipitation extremes: a review of progress and limitations in IPCC assessments and beyond. Weather Clim Extrem 11:4–16

    Article  Google Scholar 

  • Allen SE, Grimshaw H, Parkinson JA, Quarmby CL (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Hoboken

    Google Scholar 

  • Arndt D, Xia J, Liu Y, Zhou Y, Guo A, Cruz J, Sinelnikov I, Budwill K, Nesbo C, Wishart D (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucl Acids Res 40:W88–W95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baubin C, Farrell A, Stovicek A, Ghazaryan L, Giladi I, Gillor O (2019) Seasonal and spatial variability in total and active bacterial communities from desert soil. Pedobiologia 74:7–14

    Article  Google Scholar 

  • Berg A, Lintner B, Findell K, Seneviratne S, van den Hurk B, Ducharne A, Chéruy F, Hagemann S, Lawrence D, Malyshev S, Meier A, Gentine P (2015) Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J Clim 28:1308–1328

    Article  Google Scholar 

  • Bergmann G, Bates S, Eilers K, Lauber C, Caporaso J, Walters W, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlemont R, Martiny A (2014) Genomic potential for polysaccharide deconstruction in bacteria. Appl Environ Microbiol 81:1513–1519

    Article  CAS  Google Scholar 

  • Binkley D, Giardina C (1998) Why do trees affect soils in temperate and tropical forests? The warp and woof of tree/soil interactions. Biogeochemistry 42:89–106

    Article  Google Scholar 

  • Bonan G (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–14449. https://doi.org/10.1126/science.1155121

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Zheng Y, Bodelier P, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728. https://doi.org/10.1038/ncomms11728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canadell J, Schulze E (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:6. https://doi.org/10.1038/ncomms6282

    Article  Google Scholar 

  • Chaturvedi R, Gopalakrishnan R, Jayaraman M, Bala G, Joshi N, Sukumar R, Ravindranath N (2010) Impact of climate change on Indian forests: a dynamic vegetation modelling approach. Mitig Adapt Strat Gl 16:119–142

    Article  Google Scholar 

  • Chodak M, Klimek B, Azarbad H, Jaźwa M (2015) Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests. Pedobiologia 58:81–88

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples, version 9. User’s guide and application. http://purl.oclc.org/estimates

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre F, Reich P, Jeffries T, Gaitan J, Encinar D, Berdugo M, Campbell C, Singh B (2016) Microbial diversity drives multi functionality in terrestrial ecosystems. Nat Commun 7:10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinakaran J, Chandra A, Chamoli KP, Deka J, Rao KS (2018) Soil organic carbon stabilization changes with an altitude gradient of land cover types in central Himalaya, India. CATENA 170:374–385

    Article  CAS  Google Scholar 

  • Eaton WD, Mcdonald S, Roed M, Vandecar KL, Hauge JB, Barry D (2011) A comparison of nutrient dynamics and microbial community characteristics across seasons and soil types in two different old growth forests in Costa Rica. Trop Ecol 52:35–48

    CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998

    Article  CAS  PubMed  Google Scholar 

  • Faoro H, Alves A, Souza E, Rigo L, Cruz L, Al-Janabi S, Monteiro R, Baura V, Pedrosa F (2010) Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl Environ Microbiol 76:4744–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Bradford M, Jackson R (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Franciolia D, Ascher J, Ceccherini M, Pietramellara G (2014) Land use and seasonal effects on a Mediterranean soil bacterial community. J Soil Sci Plant Nut 14:710–722

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size Analysis. P. 383–411. In Page AL (ed.). Methods of soil analysis, Part1, Physical and mineralogical methods. Second Edition, Agronomy Monograph 9, American Society of Agronomy, Madison, WI

  • Gill RA, Burke IC (1999) Ecosystem consequences of plant life form changes at three sites in the semiarid United States. Oecologia 121:551–563

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan R, Jayaraman M, Bala G, Ravindranath NH (2011) Climate change and Indian forests. Curr Sci 101:348–355

    Google Scholar 

  • Gougoulias C, Clark J, Shaw L (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace J, Mitchard E, Gloor E (2014) Perturbations in the carbon budget of the tropics. Glob Chang Biol 20:3238–3255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansel C, Fendorf S, Jardine P, Francis C (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Fang J, Wang Z, Guo D, Flynn D, Geng Z (2006) Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149:115–122

    Article  PubMed  Google Scholar 

  • He X, Hou E, Liu Y, Wen D (2016) Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci Rep 6:24261. https://doi.org/10.1038/srep24261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Bai Z, Hoefel D, Hu Q, Lv X, Zhuang G, Xu S, Qi H, Zhang H (2012) Effects of cotton straw amendment on soil fertility and microbial communities. Fron Environ Sci En 6:336–349

    Article  Google Scholar 

  • Janssen P (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–426

    Article  Google Scholar 

  • Karimi B, Maron P, Chemidlin-Prevost Boure N, Bernard N, Gilbert D, Ranjard L (2017) Microbial diversity and ecological networks as indicators of environmental quality. Environ Chem Lett 15:265–281

    Article  CAS  Google Scholar 

  • Klimek B, Niklińska M, Jaźwa M, Tarasek A, Tekielak I, Musielok Ł (2015) Covariation of soil bacteria functional diversity and vegetation diversity along an altitudinal climatic gradient in the Western Carpathians. Pedobiologia 58:105–112

    Article  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  • Kuramae E, Yergeau E, Wong L, Pijl A, Veen J, Kowalchuk G (2011) Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol 79:12–24

    Article  CAS  Google Scholar 

  • Lauber C, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leff J, Jones S, Prober S, Barberán A, Borer E, Firn J, Harpole W, Hobbie S, Hofmockel K, Knops J, McCulley R, La Pierre K, Risch A, Seabloom E, Schütz M, Steenbock C, Stevens C, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Nat Acad Sci USA 112:10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Shao T, Zhu T, Long X, Gao X, Liu Z, Shao H, Rengel Z (2018) Vegetation succession influences soil carbon sequestration in coastal alkali-saline soils in southeast China. Sci Rep 8:9728. https://doi.org/10.1038/s41598-018-28054-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Loo Y, Billa L, Singh A (2015) Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci Front 6:817–823

    Article  Google Scholar 

  • Lutzow MV, Knabner IK, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  CAS  Google Scholar 

  • Louis B, Maron P, Menasseri-Aubry S, Sarr A, Lévêque J, Mathieu O, Jolivet C, Leterme P, Viaud V (2016) Microbial diversity indexes can explain soil carbon dynamics as a function of carbon source. PLoS One 11:e0161251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüneberg K, Schneider D, Siebe C, Daniel R (2018) Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley. Mexico. Sci Rep 8:1413. https://doi.org/10.1038/s41598-018-19743-x

    Article  CAS  PubMed  Google Scholar 

  • Maestre F, Delgado-Baquerizo M, Jeffries T, Eldridge D, Ochoa V, Gozalo B, Quero J, García-Gómez M, Gallardo A, Ulrich W, Bowker M, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez J, Huber-Sannwald E, Jankju M, Mau R, Miriti M, Naseri K, Ospina A, Stavi I, Wang D, Woods N, Yuan X, Zaady E, Singh B (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Nat Acad Sci USA 112:15684–15689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marty C, Houle D, Gagnon C, Courchesne F (2017) The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. CATENA 152:163–172

    Article  CAS  Google Scholar 

  • Metherell AK, Harding LA, Cole CV, and Parton WJ (1993) CENTURY Soil organic matter model environment. Technical documentation. Agroecosystem version 4.0. Great Plains System Research Unit Technical Report No. 4. USDA-ARS, Fort Collins, Colorado, USA

  • National bureau of soil survey (NBSS) Staff (1985) Soil Map of India (1:7 M). NBSS & LUP, Nagpur

    Google Scholar 

  • Navarrete A, Soares T, Rossetto R, van Veen J, Tsai S, Kuramae E (2015) Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie Van Leeuwenhoek 108:741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher D, Weicht T, Bates S, Leff J, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8:e79512

    Article  PubMed  PubMed Central  Google Scholar 

  • Nepstad DC, Carvalho CR, Davidson EA, Jipp PH, Letebvre PA, Negreiros GH, Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey R, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Sharma A, Lal R, Al-Dhabi NA, Madamwar H (2016) Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates. BMC Microbiol 16:50. https://doi.org/10.1186/s12866-016-0669-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash O, Gihring T, Dalton D, Chin K, Green S, Akob D, Wanger G, Kostka J (2010) Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int J Syst Evol Microbiol 60:546–553

    Article  CAS  PubMed  Google Scholar 

  • Raju BMK, Rao KV, Venkateswarlu B, Rao AVMS, Rama Rao CA, Rao VUM, Bapuji Rao B, Ravi Kumar N, Dhakar R, Swapna N, Latha P (2013) Revisiting climatic classification in India: a district-level analysis. Curr Sci 105:492–495

    Google Scholar 

  • Ramirez K, Leff J, Barberan A, Bates S, Betley J, Crowther T, Kelly E, Oldfield E, Shaw E, Steenbock C, Bradford M, Wall D, Fierer N (2014) Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Philos Trans R Soc Lond B Biol Sci 281:20141988

    Article  Google Scholar 

  • Reed S, Cleveland C, Townsend A (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Syst 42:489–512

    Article  Google Scholar 

  • Ren B, Hu Y, Chen B, Zhang Y, Thiele J, Shi R, Liu M, Bu R (2018) Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci Rep 8:5619. https://doi.org/10.1038/s41598-018-24040-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues J, Pellizari V, Mueller R, Baek K, Jesus E, Paula F, Mirza B, Hamaoui G, Tsai S, Feigl B, Tiedje J, Bohannan B, Nusslein K (2012) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Nat Acad Sci USA 110:988–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Bååth E, Brookes P, Lauber C, Lozupone C, Caporaso J, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Russo S, Legge R, Weber K, Brodie E, Goldfarb K, Benson A, Tan S (2012) Bacterial community structure of contrasting soils underlying Bornean rain forests: inferences from microarray and next-generation sequencing methods. Soil Biol Biochem 55:48–59

    Article  CAS  Google Scholar 

  • Schimel J, Schaeffer S (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:1–11. https://doi.org/10.3389/fmicb.2012.00348

    Article  CAS  Google Scholar 

  • Shukla P, Pandey K, Mishra V (2013) Environmental determinants of soil methane oxidation and methanotrophs. Crit Rev Environ Sci Technol 43:1945–2011

    Article  CAS  Google Scholar 

  • Sundqvist M, Sanders N, Wardle D (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Syst 44:261–280

    Article  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Tian Q, Taniguchi T, Shi W, Li G, Yamanaka N, Du S (2017) Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Sci Rep 7:45289. https://doi.org/10.1038/srep45289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi B, Song W, Slik J, Sukri R, Jaafar S, Dong K, Adams J (2016) Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity. Front Microbiol 7:22–32

    Article  Google Scholar 

  • Trivedi P, Anderson I, Singh B (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21(12):641–651

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Anderson I, Singh B (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7:1–13

    Google Scholar 

  • Trivedi P, Anderson I, Singh B (2018) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651

    Article  CAS  Google Scholar 

  • Truu M, Ostonen I, Preem J, Lõhmus K, Nõlvak H, Ligi T, Rosenvald K, Parts K, Kupper P, Truu J (2017) Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front Microbiol 8:1–15. https://doi.org/10.3389/fmicb.2017.00557

    Article  Google Scholar 

  • Uroz S, Calvaruso C, Turpault M, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Viulu S, Nakamura K, Okada Y, Saitou S, Takamizawa K (2012) Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud. Int J Syst Evol Microbiol 63:442–448

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang H, Sun L, Qi G, Chen S, Zhao X (2017) Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-00472-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Dong Y, An S (2016) Bacterial community responses to soils along a latitudinal and vegetation gradient on the loess plateau, China. PLoS One 11:e0152894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen Q, Han X (2013) Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS One 8:e84210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Shen H, He X, Thomas B, Lupwayi N, Hao X, Thomas M, Shi X (2017) Fertilization shapes bacterial community structure by alteration of soil pH. Front Microbiol 8:1325. https://doi.org/10.3389/fmicb.2017.01325

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Yang G, Lu Q, Wu M (2014) Geobacter soli sp. Nov a dissimilatory Fe(III)-reducing bacterium isolated from forest soil. Int J Syst Evol Microbiol 64:3786–3791

    Article  CAS  PubMed  Google Scholar 

Download references

AcknowledgementS

This work was financially supported by DST (DST-IS-STAC/CO2-SR-148/12(G), UGC-DSK-PDF (BSR/BL/16-17/0146) New Delhi and University of Delhi under strengthening R&D programs of Faculty at University of Delhi. Authors are thankful to Dr. R.K. Maikhuri, for his support during the selection of the study site in central Himalaya. Also authors are thankful to the forest department’s officials in Rajouri (J&K) and Bharatpur (Rajasthan) during the collection of soil samples. We thankful to Prof. Manu Agarwal for his help in illumina sequencing and bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dinakaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1029 kb)

Supplementary material 2 (XLSX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinakaran, J., Vikram, K., Hanief, M. et al. Changes in vegetation cover and soil intrinsic properties influence the soil bacterial community composition and diversity across different climatic regions of India. Vegetos 32, 288–302 (2019). https://doi.org/10.1007/s42535-019-00027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-019-00027-2

Keywords

Navigation