Skip to main content
Log in

Advanced model calibration on bitcoin options

  • Original Article
  • Published:
Digital Finance Aims and scope Submit manuscript

Abstract

In this paper, we investigate the dynamics of the bitcoin (BTC) price through the vanilla options available on the market. We calibrate a series of Markov models on the option surface. In particular, we consider the Black–Scholes model, Laplace model, five variance gamma-related models and the Heston model. We examine their pricing performance and the optimal risk-neutral model parameters over a period of 2 months. We conclude with a study of the implied liquidity of BTC call options, based on conic finance theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. \(\kappa\) = rate of mean reversion, \(\rho\) = correlation stock—vol, \(\theta\) = vol-of-vol, \(\eta\) = long-run variance, \(v_0\) = initial variance.

  2. \(C = 1/\nu\), \(G = \left( \sqrt{\frac{\theta ^2\nu ^2}{4} + \frac{\sigma ^2\nu }{2} } - \frac{\theta \nu }{2} \right) ^{-1}\) and \(M = \left( \sqrt{\frac{\theta ^2\nu ^2}{4} + \frac{\sigma ^2\nu }{2} } + \frac{\theta \nu }{2} \right) ^{-1}\)

References

  • Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 54, 177–189.

    Article  Google Scholar 

  • Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H. P., & Böhme, R. (2013). Can we afford integrity by proof-of-work? Scenarios inspired by the bitcoin currency. In: Böhme, R (Ed.), The economics of information security and privacy (pp. 135–156). Berlin: Springer (Chap. 7).

    Chapter  Google Scholar 

  • Carr, P. P., Geman, H., Madan, D. B., & Yor, M. (2003). Stochastic volatility for Lévy processes. Mathematical Finance, 13(3), 345–382.

    Article  Google Scholar 

  • Carr, P. P., & Madan, D. B. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2(4), 61–73.

    Article  Google Scholar 

  • Chen, C. Y., Härdle, W. K., Hou, A. J., & Wang, W. (2018). Pricing cryptocurrency options: The case of CRIX and bitcoin. SSRN Electronic Journal,. https://doi.org/10.2139/ssrn.3159130.

    Article  Google Scholar 

  • Corcuera, J. M., Guillaume, F., Leoni, P., & Schoutens, W. (2009). Implied Lévy volatility. Quantitative Finance, 9(4), 383–393.

    Article  Google Scholar 

  • Corcuera, J. M., Guillaume, F., Madan, D. B., & Schoutens, W. (2012). Implied liquidity: Towards stochastic liquidity modeling and liquidity trading. International Journal of Portfolio Analysis and Management, 1(1), 80–91.

    Article  Google Scholar 

  • Cretarola, A., & Figà-Talamanca, G. (2017). A confidence-based model for asset and derivative prices in the bitcoin market. Accessed 10 Jan 2019.

  • Dwyer, G. P. (2015). The economics of bitcoin and similar private digital currencies. Journal of Financial Stability, 17, 81–91. Special Issue: Instead of the Fed: Past and Present Alternatives to the Federal Reserve System.

    Article  Google Scholar 

  • Garcia, D., Tessone, C. J., Mavrodiev, P., & Perony, N. (2014). The digital traces of bubbles: Feedback cycles between socio-economics signals in the bitcoin economy. Journal of the Royal Society Interface, 11, pp 1–18

  • Heston, S. L. (1993). A closed form solution for options with stochastic volatility with applications to bonds and currency options. Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Kjærland, F., Khazal, A., Krogstad, E. A., Nordstrøm, F. B., & Oust, A. (2018). An analysis of bitcoin’s price dynamics. Journal of Risk and Financial Management, 11(4), 63.

    Article  Google Scholar 

  • Kotz, S., Kozubowski, T. J., & Podgórski, K. (2001). The Laplace distribution and generalizations. A revisit with new applications. Berlin: Springer.

    Book  Google Scholar 

  • Kristoufek, L. (2013). Bitcoin meets Google trends and Wikipedia: Quantifying the relationship between phenomena of the internet era. Scientific Reports, 3, 3415.

    Article  Google Scholar 

  • Madan, D. B. (2016). Adapted hedging. Annals of Finance, 12(3), 305–334.

    Article  Google Scholar 

  • Madan, D. B., Carr, P. P., & Chang, E. C. (1998). The variance gamma process and option pricing. European Finance Review, 2, 79–105.

    Article  Google Scholar 

  • Madan, D. B., & Milne, F. (1991). Option pricing with V.G. martingale components. Mathematical Finance, 1(4), 39–55.

    Article  Google Scholar 

  • Madan, D. B., & Schoutens, W. (2016). Applied conic finance. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Madan, D. B., Schoutens, W., & Wang, K. (2018). Bilateral multiple gamma returns: Their risks and rewards. SSRN Electronic Journal,. https://doi.org/10.2139/ssrn.3230196.

    Article  Google Scholar 

  • Madan, D. B., & Seneta, E. (1990). The V.G. model for share market returns. Journal of Business, 63, 511–524.

    Article  Google Scholar 

  • Madan, D. B., & Wang, K. (2017). Laplacian risk management. Finance Research Letters, 22, 202–210.

    Article  Google Scholar 

  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Unpublished. http://bitcoin.org/bitcoin.pdf.

  • Sato, K. (1999). Lévy processes and infinitely divisible distributions, Cambridge studies in advanced mathematics, (Vol. 68). Cambridge: Cambridge University Press.

    Google Scholar 

  • Scaillet, O., Treccani, A., & Trevisan, C. (2018). High-frequency jump analysis of the bitcoin market. Journal of Financial Econometrics.

  • Segendorf, B. (2014). What is bitcoin? Sveriges Riksbank Economic Review, 2, 71–87.

    Google Scholar 

  • Wang, S. S. (2000). A class of distortion operators for pricing financial and insurance risks. Journal of Risk and Insurance, 67(1), 15–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Reyners.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Laplace market model

A brief summary of the Laplace market model is given below. More details can be found in Madan (2016), and Madan and Wang (2017).

1.1 Laplace distribution

The density function of a Laplace distributed random variable L with mean \(\mu\) and variance \(\sigma ^2\) is given by

$$\begin{aligned} f_L(x) = \frac{1}{\sqrt{2}\sigma }\exp \left( -\sqrt{2} \ \frac{|x-\mu |}{\sigma }\right), \end{aligned}$$
(32)

and we denote \(L \sim {\mathcal {L}}(\mu , \sigma ^2)\). We refer to the Laplace distribution with zero mean and unit variance as the standard Laplace distribution \(L^*\). The characteristic function of L is given by

$$\begin{aligned} \phi (u) = \exp (iu \mu ) \left( 1 + \frac{\sigma ^2u^2}{2}\right) ^{-1}. \end{aligned}$$
(33)

We refer to Kotz et al. (2001) for a broad introduction to Laplace distributions and its extensions.

1.2 Market model

Assume that the log-returns of an asset S are modelled via the Laplace distribution:

$$\begin{aligned} \log (S_{t+s}) - \log (S_t) \sim {\mathcal {L}}\left( \mu s , \ \sigma ^2s\right), \end{aligned}$$
(34)

and hence

$$\begin{aligned} S_t \sim S_0\exp \left( \mu t + \sigma \sqrt{t}L^*\right) . \end{aligned}$$
(35)

We apply a mean-correcting measure change, assuming zero interest rates. The distribution is shifted to

$$\begin{aligned} S_t \sim S_0\exp \left( \log \left( 1-\frac{\sigma ^2t}{2}\right) + \sigma \sqrt{t}L^*\right) . \end{aligned}$$
(36)

Note that this equation is only valid for \(\sigma ^2t < 2\). The characteristic function of the log-price process \(\log (S_t)\) at time t equals:

$$\begin{aligned} \phi _t(u) = E[\exp (iu\log (S_t))] = \frac{\exp \left( iu \left( \log S_0 + \log \left( 1-\frac{\sigma ^2t}{2}\right) \right) \right) }{1 + \frac{\sigma ^2t}{2}u^2 }. \end{aligned}$$
(37)

Remark

This model is not identical to the variance gamma model with \(\theta = 0\) and \(\nu = 1\). However, the VG(\(\sigma\), 1, 0) distribution equals the Laplace distribution\({\mathcal {L}}(0,\sigma ^2)\). On the other hand, in the VG(\(\sigma\), 1, 0) model the log-returns are distributed as

$$\begin{aligned} \log (S_{t+s}) - \log (S_t) \sim {\mathrm{VG}}\left( \sigma \sqrt{s}, \ 1/s, \ 0\right) . \end{aligned}$$
(38)

The two models hence only give the same results on a maturity of 1 year.

1.3 Vanilla option pricing

The price of a call option is given by

$$\begin{aligned} C(K,T;\sigma ) = S_0 SL\left( d, \frac{\sigma \sqrt{T}}{\sqrt{2}}\right) - K SL(d,0) \end{aligned}$$
(39)

with

$$\begin{aligned} SL(x,s)&= {\left\{ \begin{array}{ll} \frac{1}{2}(1+s)\exp ((1-s)x) &{} \quad {\text {for}} \,x \le 0 \\ 1 - \frac{1}{2}(1-s)\exp (-(1+s)x) &{} \quad {\text {for}} \,x > 0 \end{array}\right. }, \end{aligned}$$
(40)
$$\begin{aligned} d&= \frac{\log (S_0/K) + \log \left( 1-\frac{\sigma ^2T}{2}\right) }{\frac{\sigma \sqrt{T}}{\sqrt{2}}}. \end{aligned}$$
(41)

Appendix B: Option data of 29 June 2018

Underlying

Strike

Maturity (days)

Is call

Bid price (USD)

Ask price (USD)

5906

5500

6.92

1

434.06

472.44

5906

5750

6.92

1

256.88

289.36

5906

6000

6.92

1

132.87

147.63

5906

6250

6.92

1

64.96

91.53

5906

6500

6.92

1

29.53

50.2

5906

6750

6.92

1

8.86

26.57

5906

5500

6.92

0

70.86

91.53

5906

5750

6.92

0

132.87

168.3

5906

6000

6.92

0

256.89

301.18

5906

6250

6.92

0

431.09

484.24

5906

6500

6.92

0

634.84

699.8

5906

6750

6.92

0

862.21

930.12

5906

7000

6.92

0

1098.43

1169.29

5872

5500

27.92

1

607.7

648.8

5872

6000

27.92

1

352.29

393.39

5872

6500

27.92

1

193.76

211.37

5872

7000

27.92

1

102.74

126.23

5872

7500

27.92

1

58.71

76.32

5872

8000

27.92

1

35.23

49.9

5872

8500

27.92

1

17.61

29.36

5872

9000

27.92

1

14.68

23.49

5872

10,000

27.92

1

2.94

14.68

5872

5500

27.92

0

240.73

275.96

5872

6000

27.92

0

478.53

528.43

5872

6500

27.92

0

810.27

874.85

5872

7000

27.92

0

1203.66

1288.79

5872

7500

27.92

0

1652.83

1743.84

5872

8000

27.92

0

2122.55

2222.36

5872

8500

27.92

0

2606.95

2712.63

5872

9000

27.92

0

3097.22

3202.9

5872

10,000

27.92

0

4089.5

4195.19

5872

11,000

27.92

0

5087.65

5190.41

5872

12,000

27.92

0

6085.29

6190.97

5867

5500

90.92

1

920.96

973.76

5867

6000

90.92

1

692.19

739.12

5867

6500

90.92

1

513.23

530.83

5867

7000

90.92

1

387.12

428.18

5867

7500

90.92

1

287.41

328.47

5867

8000

90.92

1

217.02

255.15

5867

8500

90.92

1

164.23

199.43

5867

9000

90.92

1

126.11

158.37

5867

10,000

90.92

1

79.18

105.58

5867

11,000

90.92

1

43.99

70.39

5867

12,000

90.92

1

29.33

52.79

5867

13,000

90.92

1

17.6

38.13

5867

14,000

90.92

1

8.8

29.33

5867

15,000

90.92

1

2.93

23.46

5867

20,000

90.92

1

2.93

8.8

5867

5500

90.92

0

557.27

610.06

5867

6000

90.92

0

824.17

882.83

5867

6500

90.92

0

1132.14

1196.66

5867

7000

90.92

0

1492.9

1572.09

5867

7500

90.92

0

1886.08

1965.28

5867

8000

90.92

0

2317.27

2428.73

5867

8500

90.92

0

2748.46

2877.52

5867

9000

90.92

0

3206.04

3340.97

5867

10,000

90.92

0

4147.62

4253.21

5867

11,000

90.92

0

5112.65

5259.32

5867

12,000

90.92

0

6132.9

6238.49

5867

13,000

90.92

0

7073.79

7226.3

5867

14,000

90.92

0

8065.06

8217.57

5867

15,000

90.92

0

9056.33

9211.77

5867

20,000

90.92

0

14,027.34

14,203.31

5867

25,000

90.92

0

19,010.09

19,203.65

5867

30,000

90.92

0

23,989.9

24,206.92

5867

35,000

90.92

0

28,972.64

29,207.26

5867

40,000

90.92

0

33,955.38

34,210.53

5906

6250

181.88

1

1012.77

1086.58

5906

7500

181.88

1

658.45

729.31

5906

8750

181.88

1

439.95

504.9

5906

10,000

181.88

1

310.03

363.18

5906

12,500

181.88

1

159.44

203.73

5906

15,000

181.88

1

100.39

121.06

5906

20,000

181.88

1

41.34

59.05

5906

25,000

181.88

1

20.67

29.53

5906

30,000

181.88

1

11.81

20.67

5906

35,000

181.88

1

5.91

14.76

5906

40,000

181.88

1

2.95

11.81

5906

6250

181.88

0

1328.7

1417.28

5906

7500

181.88

0

2199.88

2350.47

5906

8750

181.88

0

3215.69

3398.77

5906

10,000

181.88

0

4328.8

4523.68

5906

12,500

181.88

0

6658.24

6900.35

5906

15,000

181.88

0

9064.7

9371.77

5906

20,000

181.88

0

13,966.13

14,391.31

5906

25,000

181.88

0

18,908.9

19,384.28

5906

30,000

181.88

0

23,863.48

24,442.2

5906

35,000

181.88

0

28,823.96

29,479.46

5906

40,000

181.88

0

33,787.4

34,519.66

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madan, D.B., Reyners, S. & Schoutens, W. Advanced model calibration on bitcoin options. Digit Finance 1, 117–137 (2019). https://doi.org/10.1007/s42521-019-00002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42521-019-00002-1

Keywords

JEL Classification

Navigation