Skip to main content
Log in

Large Eddy Simulation of the Transitional Flow Around the SD7003 Airfoil and Application to Blade–Vortex Interaction

  • Original article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The transitional flow around the SD7003 airfoil at \(\alpha = 8^\circ\), \({\text { Re }}= 60,000\) and \({\text { Ma }}= 0.2\) was investigated employing p-adaptive large eddy simulations in a Discontinuous Galerkin (DG) framework. This test case is particularly challenging since a laminar separation bubble (LSB) with transition and reattachment of the turbulent boundary layer has been observed. The results obtained with the dynamic anisotropic model have been compared with experimental measurements and other numerical results available in literature. The polynomial adaptivity technique confirmed its capability to correctly represent the flow with a great saving in the computational cost. The results are close to experimental measurements thanks to the capability of the subgrid model to capture the energy backscatter from the subgrid scales. Starting from the statistically steady state flow field obtained, the viscous, parallel, Blade-Vortex Interaction (BVI) has been studied in the same numerical framework. A modelled vortex has been superimposed to the developed flow around the SD7003 airfoil and the dynamic p-adaptivity has been successfully employed to capture its advection over time. The loads have been recorded and compared with a reference simulation without the vortex. While the drag rapidly comes back to its steady-state value, the transients for lift and moment coefficients are longer because of the effect of the vortex on the LSB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. It has been proposed within the “International Workshop on High-Order CFD Methods”.

Abbreviations

DNS:

Direct numerical simulation

RANS:

Reynolds average Navier–Stokes

LES:

Large Eddy simulation

ILES:

Implicit large Eddy simulation

LSB:

Laminar separation bubble

MAV:

Micro aerial vehicle

BVI:

Blade–vortex interaction

SF:

Structure function

DOF:

Degrees of freedom

BL:

Boundary layer

KH:

Kelvin–Helmholtz

FD:

Finite differences

DG:

Discontinuous Galerkin

FR:

Flux reconstruction

CFD:

Compact finite differences

SBP:

Summation-by-parts

LEV:

Leading edge vortex

TEV:

Trailing edge vortex

LE:

Leading edge

TE:

Trailing edge

References

  1. Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry. Turbo Expo: Power for Land, Sea, and Air, vol. Volume 3: Turbo Expo 2005, Parts A and B (2005). https://doi.org/10.1115/GT2005-68663

  2. Abbà, A., Bonaventura, L., Nini, M., Restelli, M.: Dynamic models for large eddy simulation of compressible flows with a high order DG method. Comput. Fluids 122, 209–222 (2015). https://doi.org/10.1016/j.compfluid.2015.08.021. http://www.sciencedirect.com/science/article/pii/S0045793015002972

  3. Abbà, A., Bonaventura, L., Recanati, A., Tugnoli, M.: Dynamical p-adaptivity for les of compressible flows in a high order dg framework (2019)

  4. Abdalla, I.E., Yang, Z.: Numerical study of the instability mechanism in transitional separating-reattaching flow. Int. J. Heat Fluid Flow 25(4), 593–605 (2004). https://doi.org/10.1016/j.ijheatfluidflow.2004.01.004. http://www.sciencedirect.com/science/article/pii/S0142727X04000062

  5. Alam, M., Sandham, N.D.: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000). https://doi.org/10.1017/S0022112099008976

    Article  MATH  Google Scholar 

  6. Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Massa, F.: On the development of an implicit high-order discontinuous galerkin method for DNS and implicit LES of turbulent flows. Eur. J. Mech.- B/Fluids 55, 367 – 379 (2016). https://doi.org/10.1016/j.euromechflu.2015.08.010. http://www.sciencedirect.com/science/article/pii/S0997754615300303. Vortical Structures and Wall Turbulence

  7. Bassi, F., Colombo, A., Crivellini, A., Fidkowski, K., Franciolini, M., Ghidoni, A., Noventa, G.: An entropy-adjoint p -adaptive discontinuous Galerkin method for the under-resolved simulation of turbulent flows (2019). https://doi.org/10.2514/6.2019-3418

  8. Bernardos, L., Richez, F., Gleize, V., Gerolymos, G.A.: Prediction of separation-induced transition on the sd7003 airfoil using algebraic transition triggering. AIAA J. 57(9), 3812–3824 (2019). https://doi.org/10.2514/1.J058288

    Article  Google Scholar 

  9. Bolemann, T., Beck, A., Flad, D., Frank, H., Mayer, V., Munz, C.D.: High-order discontinuous Galerkin schemes for large-Eddy simulations of moderate reynolds number flows, pp. 435–456. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-12886-3_20

    Book  Google Scholar 

  10. Boom, P., Zingg, D.: Time-accurate flow simulations using an efficient newton-krylov-schur approach with high-order temporal and spatial discretization (2013). https://doi.org/10.2514/6.2013-383

  11. Breuer, M.: Effect of inflow turbulence on an airfoil flow with laminar separation bubble: an LES study. Flow Turbul. Combust. 101(2), 433–456 (2018). https://doi.org/10.1007/s10494-017-9890-2

    Article  Google Scholar 

  12. Burgmann, S., Schröder, W.: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning piv measurements. Exp. Fluids 45, 675–691 (2008). https://doi.org/10.1007/s00348-008-0548-7

    Article  Google Scholar 

  13. Catalano, P., Tognaccini, R.: Influence of free-stream turbulence on simulations of Laminar Separation Bubbles (2009). https://doi.org/10.2514/6.2009-1471

  14. Catalano, P., Tognaccini, R.: Turbulence modeling for low-Reynolds-number flows. AIAA J. 48(8), 1673–1685 (2010). https://doi.org/10.2514/1.J050067

    Article  Google Scholar 

  15. Catalano, P., Tognaccini, R.: Rans analysis of the low-reynolds number flow around the sd7003 airfoil. Aerospace Sci. Technol. 15(8), 615–626 (2011). https://doi.org/10.1016/j.ast.2010.12.006. http://www.sciencedirect.com/science/article/pii/S1270963810001616

  16. Cimarelli, A., Leonforte, A., De Angelis, E., Crivellini, A., Angeli, D.: Resolved dynamics and subgrid stresses in separating and reattaching flows. Phys. Fluids 31(9), 095101 (2019). https://doi.org/10.1063/1.5110036

    Article  Google Scholar 

  17. Crivellini, A.: Assessment of a sponge layer as a non-reflective boundary treatment with highly accurate gust-airfoil interaction results. Int. J. Comput. Fluid Dyn. 30(2), 176–200 (2016). https://doi.org/10.1080/10618562.2016.1167193

    Article  MathSciNet  Google Scholar 

  18. Droandi, G., Gibertini, G., Zanotti, A.: Perpendicular blade-vortex-interaction over an oscillating airfoil in light dynamic stall. J. Fluids Struct. 65, 472–494 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.07.010. http://www.sciencedirect.com/science/article/pii/S0889974615300074

  19. Felten, F., Lund, T.: Numerical simulation of parallel airfoil/vortex interaction using a zonal hybrid RANS/LES method (2005). https://doi.org/10.2514/6.2005-5127

  20. Galbraith, M., Visbal, M.: Implicit large eddy simulation of low reynolds number flow past the sd7003 airfoil (2008). https://doi.org/10.2514/6.2008-225

  21. Garmann, D.J., Visbal, M.R., Orkwis, P.D.: Comparative study of implicit and subgrid-scale model large-Eddy simulation techniques for low-Reynolds number airfoil applications. Int. J. Numer. Meth. Fluids 71(12), 1546–1565 (2013). https://doi.org/10.1002/fld.3725

    Article  MathSciNet  MATH  Google Scholar 

  22. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale Eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  Google Scholar 

  23. Hain, R., Kahler, C.J., Radespiel, R.: Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 630, 129–153 (2009). https://doi.org/10.1017/S0022112009006661

    Article  MATH  Google Scholar 

  24. Herbst, S.L., Kähler, C.J., Hain, R.: Influence of large-scale free-stream turbulence on an SD7003 airfoil at low Reynolds numbers. (2018). https://doi.org/10.2514/6.2018-3490

  25. Ilie, M.: A fully-coupled CFD/CSD computational approach for aeroelastic studies of helicopter blade-vortex interaction. Appl. Math. Comput. 347, 122–142 (2019). https://doi.org/10.1016/j.amc.2018.10.069

    Article  MathSciNet  MATH  Google Scholar 

  26. Ilie, M., Nitzche, F., Matida, E.: Two-dimensional Blade-Vortex interaction using large Eddy simulation (2007). https://doi.org/10.2514/6.2007-2066

  27. Kompenhans, M., Rubio, G., Ferrer, E., Valero, E.: Comparisons of p-adaptation strategies based on truncation- and discretisation-errors for high order discontinuous galerkin methods. Comput. Fluids 139, 36 – 46 (2016). https://doi.org/10.1016/j.compfluid.2016.03.026. http://www.sciencedirect.com/science/article/pii/S0045793016300895. 13th USNCCM International Symposium of High-Order Methods for Computational Fluid Dynamics—a special issue dedicated to the 60th birthday of Professor David Kopriva

  28. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(10), 5105–5143 (2008). https://doi.org/10.1016/j.jcp.2008.01.038. http://www.sciencedirect.com/science/article/pii/S0021999108000685

  29. Morvant, R., Badcock, K.K., Barakos, G.G.: Aerofoil-vortex interaction using the compressible vorticity confinement method. AIAA J. 43(1), 63–75 (2005). https://doi.org/10.2514/1.5177

    Article  Google Scholar 

  30. Naddei, F.: Adaptive large eddy simulations based on discontinuous galerkin methods (2019)

  31. Ol, M., McAuliffe, B., Hanff, E., Scholz, U., Kaehler, C.: Comparison of laminar separation bubble measurements on a low reynolds number airfoil in three facilities. In: 35th AIAA Fluid Dynamics Conference and Exhibit (2005). https://doi.org/10.2514/6.2005-5149

  32. Piomelli, U., Cabot, W.H., Moin, P., Lee, S.: Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3(7), 1766–1771 (1991). https://doi.org/10.1063/1.857956

    Article  MATH  Google Scholar 

  33. Piomelli, U., Zang, T.A., Speziale, C.G., Hussaini, M.Y.: On the large Eddy simulation of transitional wall-bounded flows. Phys. Fluids A 2(2), 257–265 (1990). https://doi.org/10.1063/1.857774

    Article  Google Scholar 

  34. Qin, S., Koochesfahani, M., Jaberi, F.: Large eddy simulations of unsteady flows over a stationary airfoil. Comput. Fluids 161, 155–170 (2018). https://doi.org/10.1016/j.compfluid.2017.11.014. http://www.sciencedirect.com/science/article/pii/S004579301730422X

  35. Radespiel, R.E., Windte, J., Scholz, U.: Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA J. 45(6), 1346–1356 (2007). https://doi.org/10.2514/1.25913

    Article  Google Scholar 

  36. Restelli, M.: Femilaro: a finite element toolkit. https://bitbucket.org/mrestelli/femilaro/wiki/Home

  37. Restelli, M., Giraldo, F.X.: A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput. 31(3), 2231–2257 (2009). https://doi.org/10.1137/070708470

    Article  MathSciNet  MATH  Google Scholar 

  38. Rival, D., Manejev, R., Tropea, C.: Measurement of parallel blade-vortex interaction at low Reynolds numbers. Exp. Fluids 49, 89–99 (2010). https://doi.org/10.1007/s00348-009-0796-1

    Article  Google Scholar 

  39. Rockwell, D.: Vortex-body interactions. Annu. Rev. Fluid Mech. 30(1), 199–229 (1998). https://doi.org/10.1146/annurev.fluid.30.1.199

    Article  MathSciNet  MATH  Google Scholar 

  40. Saathoff, P.J., Melbourne, W.H.: Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble. J. Fluid Mech. 337, 1–24 (1997). https://doi.org/10.1017/S0022112096004594

    Article  Google Scholar 

  41. Sarlak, H.: Large eddy simulation of an sd7003 airfoil: effects of Reynolds number and subgrid-scale modeling. J. Phys: Conf. Ser. 854, 012040 (2017). https://doi.org/10.1088/1742-6596/854/1/012040

    Article  Google Scholar 

  42. Selig, M.: Summary of low speed airfoil data. No. v. 1 in summary of low speed airfoil data. SoarTech Publications (1995). https://books.google.it/books?id=qtIeAQAAIAAJ

  43. Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment. Monthly Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  44. Steinhoff, J., Raviprakash, G.: Navier-Stokes computation of blade-vortex interaction using vorticity confinement (1995). https://doi.org/10.2514/6.1995-161

  45. Tanabe, Y., Saito, S., Takasaki, K., Fujita, H.: A parametric study of parallel blade-vortex-interaction noise. Noise Control Eng. J. (2009). https://doi.org/10.3397/1.3197849

    Article  Google Scholar 

  46. Tanabe, Y., Saito, S., Yang, C., Aoyama, T., Benoit, C., Gretay, J., Jeanfaivre, G., Peron, S., Sides, J.: Inviscid numerical simulations of 2d parallel blade-vortex interaction JAXA/ONERA cooperation. Tech. Rep., Japan Aerospace Exploration Agency (JAXA) (2007)

  47. Tugnoli, M.: Polynomial adaptivity for large eddy simulation of compressible turbulent flows (2017)

  48. Tugnoli, M., Abbà, A., Bonaventura, L., Restelli, M.: A locally p-adaptive approach for large eddy simulation of compressible flows in a DG framework. J. Comput. Phys. (2016). https://doi.org/10.1016/j.jcp.2017.08.007

    Article  MATH  Google Scholar 

  49. Uranga, A., Persson, P.O., Drela, M., Peraire, J.: Implicit large eddy simulation of transitional flows over airfoils and wings (2009). https://doi.org/10.2514/6.2009-4131

  50. Wang, L., Gobbert, M.K., Yu, M.: A dynamically load-balanced parallel \(p\)-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation (2019)

  51. Wilder, M., Telionis, D.: Parallel blade-vortex interaction. J. Fluids Struct. 12(7), 801–838 (1998). https://doi.org/10.1006/jfls.1998.0172. http://www.sciencedirect.com/science/article/pii/S0889974698901724

  52. Zanotti, A., Ermacora, M., Campanardi, G., Gibertini, G.: Stereo particle image velocimetry measurements of perpendicular blade-vortex interaction over an oscillating airfoil. Exp. Fluids (2014). https://doi.org/10.1007/s00348-014-1811-8

    Article  Google Scholar 

  53. Zhang, W., Hain, R., Kähler, C.J.: Scanning piv investigation of the laminar separation bubble on a sd7003 airfoil. Exp. Fluids 45(4), 725–743 (2008). https://doi.org/10.1007/s00348-008-0563-8

    Article  Google Scholar 

Download references

Acknowledgements

The computational resources have been made available by the CINECA High Performance Computing facility (Italy) on the MARCONI A2 partition thanks to the projects IscrC PAVILES, IscrC AVIPALES and IscrB LESDY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pio Catello Bresciani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresciani, A.P.C., Abbà, A. Large Eddy Simulation of the Transitional Flow Around the SD7003 Airfoil and Application to Blade–Vortex Interaction. Aerotec. Missili Spaz. 99, 275–285 (2020). https://doi.org/10.1007/s42496-020-00065-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-020-00065-z

Keywords

Navigation