Skip to main content
Log in

Delta-DOR Observations Using VLBI Antennas

  • Original article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

Delta-DOR (differential one-way ranging) is a technique which addresses the problem of orbit determination of a target deep-space spacecraft, in particular by determining its angular position in the sky. This can be achieved by means of analyzing both quasar signals, using this radio source as a calibrator, and a proper signal transmitted by the target spacecraft. These signals should be received by two or more stations, possibly set at a large distance from each other. Nowadays, European Space Agency (ESA) can count only on a few stations, more precisely the largest ones, since large signal-to-noise ratios are required to acquire the faint transmissions involved. This study has the aim to exploit a different set of stations, the ones belonging to the very long baseline interferometry (VLBI) network, to perform Delta-DOR measurements. VLBI antennas have in general the right hardware requirements but lack a proper recording output; therefore, a software translation of the recorded signal is required. As a proof-of-concept of the proposed technique, a shadow pass, involving an Italian VLBI station, of a standard ESA Delta-DOR session has been scheduled. The recorded data were successfully translated and analyzed by means of the ESA’s software correlator, showing the feasibility of this innovative procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Information about the schedule standards may be depicted from the SCHED User Manual, available at the following web page, http://www.aoc.nrao.edu/software/sched/index.html.

  2. See the official JPL Horizons web page, https://ssd.jpl.nasa.gov/horizons.cgi.

  3. Quasar ID (IAU): J1726-2258; coordinates: R.A. = 17h26’58.9045”, DEC. = -22d58’01.548” (J2000), see [27].

  4. Quasar ID (IAU): J2253+1608 (also known as 3c454.3); coordinates: R.A. = 22h53’57.747”, DEC. = 16d08’53.560” (J2000), see [27].

  5. Quasar ID (IAU): J0403+2600; coordinates: R.A. = 04h03’05.5860”, DEC = 26d00’01.502” (J2000), see [27].

Abbreviations

\(\alpha\) :

Angle between spacecraft and quasar as seen from a receiving station

B :

Baseline, the straight line which connects two receiving stations

c :

Speed of light

\(f_j\) :

Frequency of the jth DOR tone

f(t), g(t):

Generic recorded signals

\(k_j\) :

Non-dimensional integer value for the jth DOR tone

\(\varDelta \phi\) :

Differential phase

\(\varDelta \rho\) :

Differential ranging

\(\rho , {\dot{\rho }}\) :

Range and range rate of the spacecraft with respect to a receiving station

\({\mathcal {R}}_{f,g}\) :

Discrete cross correlation between functions f(t) and g(t)

\(\tau\) :

Time delay between the arrival of the same signal at the receiving stations

\(\theta\) :

Angular position in the sky of the spacecraft with respect to the baseline

\(t_i\) :

Time of arrival of a signal at a generic ith station

References

  1. Thornton, C.L., Border, J. S.: Radiometric Tracking Techniques for Deep-Space Navigation, chaps. 3, 4. Deep Space Communications and Navigation Series, JPL Publication 00-11, Pasadena (2000)

  2. Standish, E.M., Williams, E.M.: Orbital Ephemerides of the Sun, Moon, and Planets. In: P.K., Seidelmann (Ed), Explanatory supplement to the astronomical almanac, University Books, Mill Valley, pp. 279-374 (1992)

  3. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemerides DE430 and DE431. Interplanet Netw Progress Rep 196, 1–81 (2014)

    Google Scholar 

  4. Tellmann, S., Pätzold, M., Häusler, B., Bird, M.K., Leonard Tyler, G.: Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J. Geophys. Res. E Planets 114(4), E00B36(2009). https://doi.org/10.1029/2008JE003204

  5. Folkner, W.M., Iess, L., Anderson, J.D., Asmar, S.W., Buccino, D.R., Durante, D., Feldman, M., Gomez Casajus, L., Gregnanin, M., Milani, A., Parisi, M., Park, R.S., Serra, D., Tommei, G., Tortora, P., Zannoni, M., Bolton, S.J., Connerney, J.E.P., Levin, S.M.: Jupiter gravity field estimated from the first two Juno orbits. Geophys. Res. Lett. 44(10):4694–4700 (2017). https://doi.org/10.1002/2017GL073140

  6. Iess, L., Folkner, W.M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Guillot, T., Hubbard, W.B., Stevenson, D.J., Anderson, J.D., Buccino, D.R., Casajus, L.G., Milani, A., Park, R., Racioppa, P., Serra, D., Tortora, P., Zannoni, M., Cao, H., Helled, R., Lunine, J.I., Miguel, Y., Militzer, B., Wahl, S., Connerney, J.E.P., Levin, S.M., Bolton, S.J.: Measurement of Jupiter’s asymmetric gravity field. Nature 555(7695), 220 (2018). https://doi.org/10.1038/nature25776

  7. Iess, L., Militzer, B., Kaspi, Y., Nicholson, P., Durante, D., Racioppa, P., Anabtawi, A., Galanti, E., Hubbard, W., Mariani, M.J., Tortora, P., Wahl, S., Zannoni, M.: Measurement and implications of Saturn’s gravity field and ring mass. Science 364(6445), eaat2965 (2019). https://doi.org/10.1126/science.aat2965

  8. Tortora, P., Zannoni, M., Hemingway, D., Nimmo, F., Jacobson, R.A., Iess, L., Parisi, M.: Rhea gravity field and interior modeling from Cassini data analysis. Icarus 264, 264–273 (2016). https://doi.org/10.1016/j.icarus.2015.09.022

  9. Mitri, G., Postberg, F., Soderblom, J.M., Wurz, P., Tortora, P., Abel, B., Barnes, J.W., Berga, M., Carrasco, N., Coustenis, A., Paul de Vera, J.P., D’Ottavio, A., Ferri, F., Hayes, A.G., Hayne, P.O., Hillier, J.K., Kempf, S., Lebreton, J.-P., Lorenz, R.D., Martelli, A., Orosei, R., Petropoulos, A.E., Reh, K., Schmidt, J., Sotin, C., Srama, R., Tobie, G., Vorburger, A., Vuitton, V., Wong, A., Zannoni, M.: Explorer of Enceladus and Titan (\(E_{2}\)T): Investigating ocean worlds’ evolution and habitability in the solar system. Planet Space Sci 155, 73–90 (2018). https://doi.org/10.1016/j.pss.2017.11.001

  10. Durante, D., Hemingway, D.J., Racioppa, P., Iess, L., Stevenson, D.J.: Titan’s gravity field and interior structure after Cassini. Icarus 326, 123–132 (2019). https://doi.org/10.1016/j.icarus.2019.03.003

    Article  Google Scholar 

  11. Bourgoin, A., Zannoni, M., Tortora, P.: Analytical ray-tracing in planetary atmospheres. Astron. Astrophys. 624, A41 (2019). https://doi.org/10.1051/0004-6361/201834962

    Article  Google Scholar 

  12. Konopliv, A.S., Miller, J.K., Owen, W.M., Yeomans, D.K., Giorgini, J.D., Garmier, R., Barriot, J.-P.: A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros. Icarus 160(2), 289–299 (2002). https://doi.org/10.1006/icar.2002.6975

    Article  Google Scholar 

  13. Zannoni, M., Tommei, G., Modenini, D., Tortora, P., Mackenzie, R., Scoubeau, M., Herfort, U., Carnelli, I.: Radio science investigations with the Asteroid impact mission. Adv. Space Res. 62(8), 2273–2289 (2018). https://doi.org/10.1016/j.asr.2017.12.003

    Article  Google Scholar 

  14. Pätzold, M., Andert, T., Hahn, M., Asmar, S.W., Barriot, J.-P., Bird, M.K., Häusler, B., Peter, K., Tellmann, S., Grün, E., Weissman, P.R., Sierks, H., Jorda, L., Gaskell, R., Preusker, F., Scholten, F.: A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field. Nature 530(7588), 63 (2016). https://doi.org/10.1038/nature16535

    Article  Google Scholar 

  15. Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425(6956), 374 (2003). https://doi.org/10.1038/nature01997

    Article  Google Scholar 

  16. Armstrong, J.W., Iess, L., Tortora, P., Bertotti, B.: Stochastic gravitational wave background: Upper limits in the \(10^{-6}\) to \(10^{-3}\) Hz band. Astrophys. J. 599, 2I (2003). https://doi.org/10.1086/379505

    Google Scholar 

  17. Modenini, D., Tortora, P.: Pioneer 10 and 11 orbit determination analysis shows no discrepancy with Newton–Einstein laws of gravity. Phys. Rev. D Part. Fields Gravit. Cosmol. 90(2), 022004 (2014). https://doi.org/10.1103/PhysRevD.90.022004

  18. Serra, D., Di Pierri, V., Schettino, G., Tommei, G.: Test of general relativity during the BepiColombo interplanetary cruise to Mercury. Phys. Rev. D 98(6), 064059 (2018). https://doi.org/10.1103/PhysRevD.98.064059

  19. Jones, D.L., Folkner, W.M., Jacobson, R.A., Jacobs, C.S., Dhawan, V., Romney, J., Fomalont, E.: Astrometry of Cassini with the VLBA to improve the Saturn ephemeris. Astron. J. 149(1), 28 (2015). https://doi.org/10.1088/0004-6256/149/1/28

  20. Iess, L., Abellò, R., Ardito, A., Comoretto, G., Lanucara, M., Maddè, R., Mercolino, M., Rapino, G., Sensi, M., Tortora, P.: The European Delta-DOR correlator. 57th International Astronautical Congress, Valencia (2006)

  21. Delta-DOR Raw Data Exchange Format, Recommended Standard. CCSDS 506.1-B-1, CCSDS Secretariat, Washington, DC (2013)

  22. Delta-DOR - Technical characteristics and performance, Informational Report. CCSDS 500.1-G-1, CCSDS Secretariat, Washington, DC (2013)

  23. Zwitter, T.: Gaia space mission and quasars. Front. Astron. Space Sci. 4 (2017). https://doi.org/10.3389/fspas.2017.00041

  24. Border, J.S., Koukos, A.: Technical characteristics and accuracy capabilities of delta differential one-way ranging (Delta-DOR) as a spacecraft navigation tool. In: CCSDS Meeting of RF and Modulation Standards Working Group, Munich (1993)

  25. Iess, L., Abellò, R., Ardito, A., Comoretto, G., Lanucara, M., Maddè, R., Mercolino, M., Rapino, G., Sensi, M., Tortora, P.: The software correlator for ESA Delta-DOR. In: 4th Radionet Engineering Forum Workshop: Next Generation Correlators for Radio Astronomy and Geodesy, Groningen (2006)

  26. Iess, L., Budnik, F., Colamarino, C., Corbelli, A., Di Benedetto, M., Fabbri, V., Graziani, A., Hunt, R., James, N., Lanucara, M., Maddè, R., Marabucci, M., Mariotti, G., Mercolino, M., Racioppa, P., Simone, L., Tortora, P., Westcott, M., Zannoni, M.: ASTRA: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques. In: Proceedings of the International Astronautical Congress, IAC 5, 3425–3435 (2012)

  27. The VLBA Calibrator Source List. http://www.vlba.nrao.edu/astro/calib/vlbaCalib.txt. Accessed 7 Feb 2019

Download references

Acknowledgements

Observations were carried out with the Italian Medicina radio telescope, managed by INAF—National Institute for Astrophysics. I acknowledge the local staff for the effective and participated support provided to the experiments. I want to thank ESA—European Space Agency for the precious support, in particular provided by Marco Menapace and Mattia Mercolino, together with the fundamental help provided by Alessandro Ardito, ARPSOFT. I want also to thank Giuseppe Maccaferri, Roberto Orosei, INAF, and my advisors Paolo Tortora and Marco Zannoni from the University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fiori.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiori, F. Delta-DOR Observations Using VLBI Antennas. Aerotec. Missili Spaz. 98, 175–185 (2019). https://doi.org/10.1007/s42496-019-00023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-019-00023-4

Keywords

Navigation