Skip to main content
Log in

Easily-add battery-free wireless sensors to everyday objects: system implementation and usability study

  • Regular Paper
  • Published:
CCF Transactions on Pervasive Computing and Interaction Aims and scope Submit manuscript

Abstract

The trend of IoT brings more and more connected smart devices into our daily lives, which can enable a ubiquitous sensing and interaction experience. However, augmenting many everyday objects with sensing abilities is not easy. BitID is an unobtrusive, low-cost, training-free, and easy-to-use technique that enables users to add sensing abilities to everyday objects in a DIY manner. A BitID sensor can be easily made from a UHF RFID tag and deployed on an object so that the tag’s readability (whether the tag is identified by RFID readers) is mapped to binary states of the object (e.g., whether a door is open or closed). To further validate BitID’s sensing performance, we use a robotic arm to press BitID buttons repetitively and swipe on BitID sliders. The average press recognition F1-score is 98.9% and the swipe recognition F1-score is 96.7%. To evaluate BitID’s usability, we implement a prototype system that supports BitID sensor registration, semantic definition, status display, and real-time state and event detection. Using the system, users configured and deployed a BitID sensor with an average time duration of 4.9 min. 23 of the 24 users deployed BitID sensors worked accurately and robustly. In addition to the previously proposed ’short’ BitID sensor, we propose new ’open’ BitID sensors which show similar performance as ’short’ sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The data that support the findings of this work are available from the corresponding author, Yuntao Wang, upon reasonable request.

Notes

  1. Detailed explanation of RFID inlays can be found at https://skyrfid.com/RFID_Tag_Inlays.php.

  2. https://www.dobot.cc/dobot-magician/product-overview.html.

  3. https://github.com/AlexFxw/BitID.

  4. https://ifttt.com/.

  5. https://yeelight.com/zh_CN/product/wifi-led-c.

  6. https://www.sonos.com/en-us/shop/play1.html.

References

  • Bhattacharyya, R., Floerkemeier, C., Sarma, S.: Towards tag antenna based sensing—an RFID displacement sensor. IEEE Int. Conf. RFID 2009, 95–102 (2009). https://doi.org/10.1109/RFID.2009.4911195

    Article  Google Scholar 

  • Bhattacharyya, R., Floerkemeier, C., Sarma, S.: Low-cost, ubiquitous RFID-tag-antenna-based sensing. Proc. IEEE 98(9), 1593–1600 (2010). https://doi.org/10.1109/JPROC.2010.2051790

    Article  Google Scholar 

  • Buettner, M., Wetherall, D.: An empirical study of UHF RFID performance. In: Proceedings of the 14th ACM international conference on Mobile computing and networking - MobiCom ’08, ACM Press, San Francisco, California, USA, (2008), p. 223. https://doi.org/10.1145/1409944.1409970

  • Buettner, M., Prasad, R., Philipose, M., Wetherall, D.: Recognizing Daily Activities with RFID-based Sensors. In: Proceedings of the 11th International Conference on Ubiquitous Computing, UbiComp ’09, ACM, New York, NY, USA, (2009), pp. 51–60. https://doi.org/10.1145/1620545.1620553

  • Chang, L., Xiong, J., Wang, J., Chen, X., Wang, Y., Tang, Z., Fang, D.: RF-copybook: a millimeter level calligraphy copybook based on commodity RFID. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 128, 1–128 (2018). https://doi.org/10.1145/3161191

    Article  Google Scholar 

  • Ensworth, J.F., Reynolds, M.S.: BLE-backscatter: ultralow-power IoT nodes compatible with bluetooth 4.0 low energy (BLE) smartphones and tablets. IEEE Trans. Microwave Theory Tech. 65(9), 3360–3368 (2017)

    Article  Google Scholar 

  • Fan, X., Gong, W., Liu, J.: TagFree activity identification with RFIDs. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 1–23 (2018). https://doi.org/10.1145/3191739

    Article  Google Scholar 

  • Fishkin, K. P., Philipose, M., Rea, A.: Hands-On RFID: wireless wearables for detecting use of objects. In: Proceedings of the ninth IEEE international symposium on wearable computers, ISWC ’05, IEEE Computer Society, Washington, DC, USA, (2005), pp. 38–43. https://doi.org/10.1109/ISWC.2005.25

  • Gummeson, J., Mccann, J., Yang, C.J., Ranasinghe, D., Hudson, S., Sample, A.: RFID Light Bulb: Enabling Ubiquitous Deployment of Interactive RFID Systems. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol 1(2), 1–12 (2017). https://doi.org/10.1145/3090077

    Article  Google Scholar 

  • Hsieh, M.-J., Liang, R.-H., Huang, D.-Y., Ke, J.-Y., Chen, B.-Y.: RFIBricks: Interactive building blocks based on RFID. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems-CHI ’18, ACM Press, Montreal QC, Canada, (2018), pp. 1–10. https://doi.org/10.1145/3173574.3173763

  • Jang, J., Adib, F.: Underwater backscatter networking. In: Proceedings of the ACM Special Interest Group on Data Communication, ACM, Beijing China, (2019), pp. 187–199. https://doi.org/10.1145/3341302.3342091

  • Jin, H., Yang, Z., Kumar, S., Hong, J.I.: Towards wearable everyday body-frame tracking using passive RFIDs. Proc ACM Interact Mob Wearable Ubiquitous Technol. 145, 1–145 (2018). https://doi.org/10.1145/3161199

    Article  Google Scholar 

  • Li, H., Ye, C., Sample, A. P.: IDSense: A Human Object Interaction Detection System Based on Passive UHF RFID. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, ACM, New York, NY, USA, (2015), pp. 2555–2564. https://doi.org/10.1145/2702123.2702178

  • Li, H., Brockmeyer, E., Carter, E. J., Fromm, J., Hudson, S. E., Patel, S. N., Sample, A.: PaperID: A Technique for Drawing Functional Battery-Free Wireless Interfaces on Paper, ACM Press, (2016), pp. 5885–5896. https://doi.org/10.1145/2858036.2858249

  • Li, H., Wan, C.-y., Shah, R. C.: IDAct: Towards unobtrusive recognition of user presence and daily activities, IEEE, (2019), p. 8

  • Lin, Q., Yang, L., Sun, Y., Liu, T., Li, X.Y., Liu, Y.: Beyond one-dollar mouse: a battery-free device for 3D human–computer interaction via RFID tags. IEEE Conf. Comput. Commun. (INFOCOM) 2015, 1661–1669 (2015). https://doi.org/10.1109/INFOCOM.2015.7218546

    Article  Google Scholar 

  • Naderiparizi, S., Zhao, Y., Youngquist, J., Sample, A. P., Smith, J. R.: Self-localizing Battery-free Cameras. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15, ACM, New York, NY, USA, (2015), pp. 445–449. https://doi.org/10.1145/2750858.2805846

  • Nikitin, P.V., Rao, K.V.S.: Performance limitations of passive UHF RFID systems. IEEE Antennas Propag. Soc. Int. Sympos. 2006, 1011–1014 (2006). https://doi.org/10.1109/APS.2006.1710704

    Article  Google Scholar 

  • Nikitin, P.V., Rao, K.V.S., Martinez, R.D.: Differential RCS of RFID tag. Electr. Lett. 43(8), 431–432 (2007). https://doi.org/10.1049/el:20070253

    Article  Google Scholar 

  • Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hahnel, D.: Inferring activities from interactions with objects. IEEE Pervasive Comput. 3(4), 50–57 (2004). https://doi.org/10.1109/MPRV.2004.7

    Article  Google Scholar 

  • Philipose, M., Smith, J.R., Jiang, B., Mamishev, A., Sundaraajan, A.K.: Battery-free wireless identification and sensing. Pervasive Comput. 4(1), 37–45 (2005). https://doi.org/10.1109/MPRV.2005.7

    Article  Google Scholar 

  • Pradhan, S., Chai, E., Sundaresan, K., Qiu, L., Khojastepour, M. A., Rangarajan, S.: RIO: a pervasive RFID-based touch gesture interface. In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, MobiCom ’17, ACM, New York, NY, USA, (2017), pp. 261–274. https://doi.org/10.1145/3117811.3117818

  • Rao, K.V.S., Nikitin, P.V., Rao, K.V.S., Nikitin, P.V.: Theory and measurement of backscattering from RFID tags. IEEE Antennas Propag. Mag. 48(6), 212–218 (2006). https://doi.org/10.1109/MAP.2006.323323

    Article  Google Scholar 

  • Sample, A.P., Yeager, D.J., Powledge, P.S., Smith, J.R.: Design of a passively-powered, programmable sensing platform for UHF RFID systems. IEEE Int. Conf. RFID 2007, 149–156 (2007). https://doi.org/10.1109/RFID.2007.346163

    Article  Google Scholar 

  • Sample, A.P., Yeager, D.J., Smith, J.R.: A capacitive touch interface for passive RFID tags. IEEE Int. Conf. RFID 2009, 103–109 (2009). https://doi.org/10.1109/RFID.2009.4911212

    Article  Google Scholar 

  • Sas, C., Neustaedter, C.: Exploring DIY practices of complex home technologies. ACM Trans. Comput. Hum. Interact. 24(2), 1–29 (2017). https://doi.org/10.1145/3057863

    Article  Google Scholar 

  • Siden, J., Jonsson, P., Olsson, T., Wang, G.: Performance degradation of RFID system due to the distortion in RFID tag antenna. In: 11th International Conference ’Microwave and Telecommunication Technology’. Conference Proceedings (IEEE Cat. No.01EX487), (2001), pp. 371–373. https://doi.org/10.1109/CRMICO.2001.961592

  • Smith, J. R., Jiang, B., Roy, S., Philipose, M., Sundara-rajan, K., Mamishev, E.: ID modulation: Embedding sensor data in an RFID timeseries. In: Proceeding of 7th Inf. Hiding Workshop, (2005), pp. 234–246

  • Spielberg, A., Sample, A., Hudson, S. E., Mankoff, J., McCann, J.: RapID: A Framework for Fabricating Low-Latency Interactive Objects with RFID Tags, in: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, ACM, New York, NY, USA, (2016), pp. 5897–5908. https://doi.org/10.1145/2858036.2858243

  • Wang, A., Iyer, V., Talla, V., Smith, J. R., Gollakota, S.: FM backscatter: enabling connected cities and smart fabrics. In: Proceedings of the 14th USENIX conference on networked systems design and implementation, NSDI’17, USENIX Association, Boston, MA, USA, (2017), pp. 243–258, 00097

  • Wang, J., Abari, O., Keshav, S.: Challenge: RFID hacking for fun and profit. In: Proceedings of the 24th annual international conference on mobile computing and networking—MobiCom ’18, ACM Press, New Delhi, India, (2018), pp. 461–470. https://doi.org/10.1145/3241539.3241561

  • Wang, Y., Zheng, Y.: Modeling RFID signal reflection for contact-free activity recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(4), 1–22 (2018). https://doi.org/10.1145/3287071

    Article  Google Scholar 

  • Want, R.: Enabling ubiquitous sensing with RFID. Computer 37(4), 84–86 (2004). https://doi.org/10.1109/MC.2004.1297315

    Article  Google Scholar 

  • Want, R., Fishkin, K. P., Gujar, A., Harrison, B. L.: Bridging physical and virtual worlds with electronic tags. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’99, ACM, New York, NY, USA, (1999), pp. 370–377. https://doi.org/10.1145/302979.303111

  • Woo, J.-b., Lim, Y.-k.: User experience in do-it-yourself-style smart homes. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp ’15, ACM Press, Osaka, Japan, (2015), pp. 779–790. https://doi.org/10.1145/2750858.2806063

  • Yang, L., Lin, Q., Li, X., Liu, T., Liu, Y.: See through walls with COTS RFID system. In: Proceedings of the 21st Annual International Conference on Mobile Computing and networking–MobiCom ’15, ACM Press, Paris, France, (2015), pp. 487–499. https://doi.org/10.1145/2789168.2790100

  • Zhang, P., Bharadia, D., Joshi, K., Katti, S.: HitchHike: Practical Backscatter Using Commodity WiFi. In: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, SenSys ’16, ACM, New York, NY, USA, (2016), pp. 259–271, event-place: Stanford, CA, USA. https://doi.org/10.1145/2994551.2994565

  • Zhang, T., Becker, N., Wang, Y., Zhou, Y., Shi, Y.: BitID: easily add battery-free wireless sensors to everyday objects. IEEE Int. Conf. Smart Comput. (SMARTCOMP) 2017, 1–8 (2017). https://doi.org/10.1109/SMARTCOMP.2017.7946990

    Article  Google Scholar 

  • Zhang, Y., Laput, G., Harrison, C.: Vibrosight: Long-range vibrometry for smart environment sensing. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, Association for Computing Machinery, New York, NY, USA, (2018), pp. 225–236. https://doi.org/10.1145/3242587.3242608

  • Zhang, T., Zeng, X., Zhang, Y., Sun, K., Wang, Y., Chen, Y.: ThermalRing: Gesture and tag inputs enabled by a thermal imaging smart ring. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, Association for Computing Machinery, Honolulu, HI, USA, (2020), pp. 1–13. https://doi.org/10.1145/3313831.3376323

  • Zou, Y., Xiao, J., Han, J., Wu, K., Li, Y., Ni, L.M.: GRfid: a device-free RFID-based gesture recognition system. IEEE Trans. Mob. Comput. 16(2), 381–393 (2017). https://doi.org/10.1109/TMC.2016.2549518

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (NSFC) under Grant No.6213000120, Mobile Working Project under Grant No. 044060014, NSFC Fund for Young Scholars under Grant Nos. 62102401, 62002198, Innovation Project of Institute of Computing Technology, Chinese Academy of Sciences under Grant No. E061040, and Open Project of Beijing Key Laboratory of Mobile Computing and Pervasive Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntao Wang.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Code availability

The source code of both the front-end and back-end of the implemented BitID system is open-sourced at https://github.com/AlexFxw/BitID. The source code for user studies is available from the corresponding author, Yuntao Wang, upon reasonable request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1: Tutorial video used in the study. (MP4 18841 KB)

JSON Format

JSON Format

1.1 Object Sensing BitID

The below JSON string shows an open BitID sensor applied on a drawer. When the tag is identified (’ON’), the drawer should be closed; when the tag is not identified (’OFF’), the drawer should be opened.

figure a

1.2 Interaction sensing BitID

The below JSON string shows a short BitID button that toggles a smart LED bulb when the headset of a phone is put down, while toggles the mute setting of a smart speaker when the headset of the phone is picked up.

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Qian, Z., Fan, H.W. et al. Easily-add battery-free wireless sensors to everyday objects: system implementation and usability study. CCF Trans. Pervasive Comp. Interact. 4, 45–60 (2022). https://doi.org/10.1007/s42486-022-00087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42486-022-00087-5

Keywords

Navigation