Skip to main content

Advertisement

Log in

Unravelling the natural dual-target inhibiting potential of cucurbit bioactive compounds for the management of cucumber mosaic virus (CMV) through computational approaches

  • Original Article
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

Cucumber mosaic virus (CMV), one of the top ten most devastating plant pathogenic viruses infects nearly 1300 crop species causing huge economic losses. It is transmitted by more than 80 aphid species (Insecta: Hemiptera: Aphidoidea) including Myzus persicae and Aphis gossypii in a non-persistent, stylet-borne manner. The coat protein (CP) of the virus is identified as the primary determinant for aphid transmission, and a stylet-borne M. persicae Cuticle Protein (MPCP4) RR1 is crucial for the CMV acquisition. All the conventional management strategies rely on heavy use of eco-unfriendly agrochemicals, leading to the development of multi-drug insect resistance. Though, cucurbits lack completely resistant varieties for CMV, have a powerhouse of several endogenous bioactive compounds. In the present study, molecular docking was performed with 61 selected cucurbit bioactive compounds against two target proteins; the CMV–CP and RR1 protein for their binding energies, molecular interactions, and inhibition constant. The prime MM–GBSA approach was further used for calculating the change in Gibb’s free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules. Our docking results showed that two phenolic compounds topped the list viz., amentoflavone and quercetin with higher binding affinities towards both the targets by which these compounds exhibit the anti-viral and insecticidal effect. Furthermore, the lead molecule amentoflavone had energetically more favorable ΔG value for the CP and cucurbitacin D for RR1 protein, respectively. These compounds also had lower toxicity and better agrochemical-like properties than synthetic pesticides. Based on these results, it would be interesting to determine their dual inhibiting potential and field applicability as a safe sustainable approach for CMV disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andersen SO (1998) Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 28(5–6):421–434

    CAS  PubMed  Google Scholar 

  • Arooj M, Sakkiah S, Cao GP, Lee KW (2013) An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes. PLoS ONE 8(4):e60470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balkema-Boomstra AG, Zijlstra S, Verstappen FW, Inggamer H, Mercke PE, Jongsma MA, Bouwmeester HJ (2003) Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). J Chem Ecol 29(1):225–235

    CAS  PubMed  Google Scholar 

  • Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:257–263. https://doi.org/10.1093/nar/gky318

    Article  CAS  Google Scholar 

  • Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci 105(1):129–134

    CAS  PubMed  Google Scholar 

  • Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5(12):e1000585

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Francki RIB (1990) Cucumovirus transmission by the aphid Myzus persicae is determined solely by the viral coat protein. J Gen Virol 71:939–944

    Article  CAS  Google Scholar 

  • Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 22(3):386–399

    CAS  PubMed  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23(4):1219–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci 2(9):1511–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–3

    Google Scholar 

  • Dombrovsky A, Huet H, Zhang H, Chejanovsky N, Raccah B (2003) Comparison of newly isolated cuticular protein genes from six aphid species. Insect Biochem Mol Biol 33(7):709–715

    CAS  PubMed  Google Scholar 

  • Dombrovsky A, Gollop N, Chen S, Chejanovsky N, Raccah B (2007) In vitro association between the helper component–proteinase of zucchini yellow mosaic virus and cuticle proteins of Myzus persicae. J Gen Virol 88(5):1602–1610

    CAS  PubMed  Google Scholar 

  • Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42(W1):W53–W58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. Humana Press, Totowa

    Google Scholar 

  • Gellért Á, Salánki K, Náray-Szabó G, Balázs E (2006) Homology modelling and protein structure based functional analysis of five cucumovirus coat proteins. J Mol Graph Model 24(5):319–327

    PubMed  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6):681–684

    CAS  Google Scholar 

  • Guruprasad K, Reddy BB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4(2):155–161

    CAS  Google Scholar 

  • Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296

    CAS  PubMed  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898

    CAS  PubMed  Google Scholar 

  • Kant K, Rawat R, Bhati V, Bhosale S, Sharma D, Banerjee S, Kumar A (2021) Computational identification of natural product leads that inhibit mast cell chymase: an exclusive plausible treatment for Japanese encephalitis. J Biomol Struct Dyn 39(4):1203–1212

    CAS  PubMed  Google Scholar 

  • Karthick V, Nagasundaram N, Doss CG, Chakraborty C, Siva R, Lu A, Zhang G, Zhu H (2016) Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus. Infect Dis Poverty 5(1):1–10

    Google Scholar 

  • Kates HR, Soltis PS, Soltis DE (2017) Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol Phylogenet Evol 111:98–109

    PubMed  Google Scholar 

  • Kortbeek RW, Gragt VM, Bleeker PM (2019) Endogenous plant metabolites against insects. Eur J Plant Pathol 154(1):67–90

    Google Scholar 

  • Kostecka-Gugała A, Kruczek M, Ledwożyw-Smoleń I, Kaszycki P (2020) Antioxidants and health-beneficial nutrients in fruits of eighteen Cucurbita cultivars: analysis of diversity and dietary implications. Molecules 25(8):1792

    PubMed Central  Google Scholar 

  • Kulczyński B, Gramza-Michałowska A (2019) The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules 24(18):3212

    PubMed Central  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. https://doi.org/10.1021/ci200227

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    CAS  Google Scholar 

  • Lattanzio V, Arpaia S, Cardinali A, Di Venere D, Linsalata V (2000) Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J Agric Food Chem 48(11):5316–5320

    CAS  PubMed  Google Scholar 

  • Lattanzio V, Cardinali A, Linsalata V (2012) Plant phenolics: a biochemical and physiological perspective. Recent Adv Polyphenol Res 3:1–39

    CAS  Google Scholar 

  • Li N, Yu C, Yin Y, Gao S, Wang F, Jiao C, Yao M (2020) Pepper crop improvement against cucumber mosaic virus (CMV): a review. Front Plant Sci 11:1932

    Google Scholar 

  • Liang Y, Gao XW (2017) The cuticle protein gene MPCP4 of Myzus persicae (Homoptera: Aphididae) plays a critical role in cucumber mosaic virus acquisition. J Econ Entomol 110(3):848–853

    CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    CAS  Google Scholar 

  • Liu S, He X, Park G, Josefsson C, Perry KL (2002) A conserved capsid protein surface domain of Cucumber mosaic virus is essential for efficient aphid vector transmission. J Virol 76(19):9756–9762. https://doi.org/10.1128/jvi.76.19.9756-9762.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85

    PubMed  Google Scholar 

  • Mallek-Ayadi S, Bahloul N, Kechaou N (2017) Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food Chem 221:1691–1697

    CAS  PubMed  Google Scholar 

  • Messaoudi A, Belguith H, Hamida JB (2013) Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theor Biol Med Model 10(1):1–10

    Google Scholar 

  • Naidoo D, Roy A, Kar P, Mutanda T, Anandraj A (2020) Cyanobacterial metabolites as promising drug leads against the Mpro and PLpro of SARS-CoV-2: an in silico analysis. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Natesh J, Mondal P, Kaur B, Abdul Salam AA, Kasilingam S, Meeran SM (2021) Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Comput Biol Med 133:104383. https://doi.org/10.1016/j.compbiomed.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemes K, Gellért Á, Bóka K, Vági P, Salánki K (2019) Symptom recovery is affected by Cucumber mosaic virus coat protein phosphorylation. Virology 536:68–77

    CAS  PubMed  Google Scholar 

  • Nesom GL (2011) New state records for Citrullus, Cucumis, and Cucurbita (Cucurbitaceae) outside of cultivation in the USA. Phytoneuron 1:1–7

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform. 3(1):1–4

    Google Scholar 

  • Onawole AT, Kolapo TU, Sulaiman KO, Adegoke RO (2018) Structure based virtual screening of the Ebola virus trimeric glycoprotein using consensus scoring. Comput Biol Chem 72:170–180. https://doi.org/10.1016/j.compbiolchem.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  • Palukaitis P, Garcíaarenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323. https://doi.org/10.1016/S0065-3527(03)62005-1

    Article  CAS  PubMed  Google Scholar 

  • Pathak RK, Baunthiyal M, Shukla R, Pandey D, Taj G, Kumar A (2017) In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against alternaria blight disease in brassica species. Front Plant Sci 8:609

    PubMed  PubMed Central  Google Scholar 

  • Petkova Z, Antova G (2015) Proximate composition of seeds and seed oils from melon (Cucumis melo L.) cultivated in Bulgaria. Cogent Food Agric 1(1):1018779

    Google Scholar 

  • Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X, Zhu S (2018) Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Sci Rep 8(1):1205. https://doi.org/10.1038/s41598-018-19525-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat R, Verma SM (2020) High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of Pf DHODH and Pf Cytbc1 complex to combat drug resistant malaria. J Biomol Struct Dyn 23:1–2

    Google Scholar 

  • Rebers JE, Riddiford LM (1988) Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 203(2):411–423

    CAS  PubMed  Google Scholar 

  • Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40(W1):W471–W477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio L, Galipienso L, Ferriol I (2020) Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front Plant Sci 11:1092

    PubMed  PubMed Central  Google Scholar 

  • Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17(1):57–61

    CAS  PubMed  Google Scholar 

  • Sidhu KS, Bhangu SK, Pathak RK, Yadav IS, Chhuneja P (2020) Identification of natural lead compounds for leaf rust of wheat: a molecular docking and simulation study. J Proteins Proteomics 11(4):283–295

    CAS  Google Scholar 

  • Simmonds MS (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64(1):21–30

    CAS  PubMed  Google Scholar 

  • Sirin S, Kumar R, Martinez C, Karmilowicz MJ, Ghosh P, Abramov YA, Martin V, Sherman W (2014) A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. J Chem Inf Model 54(8):2334–2346

    CAS  PubMed  Google Scholar 

  • Smith TJ, Chase E, Schmidt T, Perry KL (2000) The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J Virol 74(16):7578–7586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uzest M, Gargani D, Drucker M, Hébrard E, Garzo E, Candresse T, Fereres A, Blanc S (2007) A protein key to plant virus transmission at the tip of the insect vector stylet. Proc Natl Acad Sci 104(46):17959–17964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uzest M, Gargani D, Dombrovsky A, Cazevieille C, Cot D, Blanc S (2010) The “acrostyle”: a newly described anatomical structure in aphid stylets. Arthropod Struct Dev 39(4):221–229

    PubMed  Google Scholar 

  • Wallis CM, Galarneau ER (2020) Phenolic compound Induction in plant-microbe and plant–insect interactions: a meta-analysis. Front Plant Sci 11:2034

    Google Scholar 

  • Webster CG, Pichon E, Van Munster M, Monsion B, Deshoux M, Gargani D, Calevro F, Jiménez J, Moreno A, Krenz B, Thompson JR (2018) Identification of plant virus receptor candidates in the stylets of their aphid vectors. J Virol 92(14):e00432-18

    PubMed  PubMed Central  Google Scholar 

  • Wu ST, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 5(1):1

    Google Scholar 

  • Yang J, Roy A, Zhang Y (2013a) BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res 41(D1):D1096–D1103

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013b) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29(20):2588–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9(1):1–8

    Google Scholar 

  • Zhang Y, Skolnick J (2004a) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 101:7594–7599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Skolnick J (2004b) SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 25(6):865–871

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University of Agricultural Sciences, Bangalore, India to provide all the facilities to carry out this work. RMK is thankful to Indian Council of Agricultural Research, New Delhi for providing national doctoral fellowship, ICAR-SRF.

Funding

This work was performed using open source software and hence received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

RMK performed all the in silico analysis, prepared the figures and wrote the draft manuscript, RA analyzed and interpreted the data. AP edited, revised and approved the final manuscript.

Corresponding author

Correspondence to Anitha Peter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1425 KB)

Supplementary file 2 (PDF 1900 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.M., Anantapur, R. & Peter, A. Unravelling the natural dual-target inhibiting potential of cucurbit bioactive compounds for the management of cucumber mosaic virus (CMV) through computational approaches. J Proteins Proteom 12, 307–324 (2021). https://doi.org/10.1007/s42485-021-00079-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42485-021-00079-6

Keywords

Navigation