Skip to main content
Log in

Hevea brasiliensis latex dialysed C-serum precipitate subfraction exerts a negligible level of genotoxicity in the Ames test, mouse lymphoma assay and micronucleus assay

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Dialysed C-serum precipitate (DCP), a sub-fraction of latex C-serum originating from Hevea brasiliensis, has shown specific in vitro antiproliferative properties towards cancer-origin cell lines. As a potential agent to be used in cancer treatment, preclinical safety assessment tests are crucial. This study focused on investigating the mutagenicity of DCP via bacterial reverse mutation assay (Ames test), Mouse lymphoma assay (MLA), and micronucleus assay according to OECD guidelines. No mutagenicity was exhibited by DCP at concentrations lower than 1 mg/mL for the five different auxotroph strains of Salmonella typhimurium (TA 98, TA 100, TA 1535, and TA 1537) and Escherichia coli WP2uvrA pKM101 in the absence and presence of metabolic activation system (S9-mix). Nonetheless, it has been found that DCP was able to induce negligible mutation in MLA and micronucleus assay. Overall, DCP does express dose-dependant mutagenicity according to the assays conducted and thus, it is crucial to take this into consideration should DCP be used in the development of therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request. Data are located in controlled access data storage at Instutute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.

Abbreviations

2-AA:

2-Aminoanthracene

2-NF:

2-Nitrofluorene

9-AA:

9-Aminoacridine

BN:

Binucleated

BP:

Benzopyrene

CBPI:

Cytokinesis block proliferation index

CB:

Cytochalasin B

DCP:

Dialysed C-serum precipitate

dThd:

Thymidine deoxyriboside

dTMP:

Deoxythymidylate

E.coli :

Escherichia coli

GEF:

Global evaluation factor

HS:

Horse serum

IMF:

Induced mutant frequency

KCl:

Potassium chloride

LC:

Large colony

MF:

Mutant frequency

MI:

Mutagenicity index

MLA:

Mouse lyphoma assay

MMS:

Methylmethane sulfonate

MN:

Micronuclues

NaN3 :

Sodium azide

NCE:

New chemical entities

NDA:

New drug application

OECD:

Organisation for economic co-operation and development

PBS:

Phosphate buffered saline

R10:

RPMI 1640 with 10% HS

R20:

RPMI 1640 with 20% HS

R5:

RPMI 1640 with 5% HS

RPD:

Relative population index

RPMI 1640:

Roswell Park Memorial Institute Media

RSG:

Relative suspension growth

RTG:

Relative total growth

RV:

Relative viability

S. typhimurium :

Salmonella typhimurium

SC:

Small colony

SMF:

Spontaneous mutant frequency

TFT:

Triflourothymidine

THG:

R10 media supplemented with thymidine, hypoxanthine and glycine

THMG:

R10 media supplemented with thymidine, hypoxanthine, methotrexate and glycine

Tk :

Thymidine kinase

TX:

Triton X-100

References

  1. Allemang A et al (2021) A comparison of classical and 21st century genotoxicity tools: a proof of concept study of 18 chemicals comparing in vitro micronucleus, ToxTracker and genomics-based methods (TGx-DDI, whole genome clustering and connectivity mapping). Environ Mol Mutagen 62:92–107

    Article  CAS  Google Scholar 

  2. Bini M et al (2021) Chronic exposure of industrial grade calcium carbide and ethylene glycol exert genotoxic effect in Wistar albino rats. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2020-0087

  3. Brüsehafer K et al (2016) The clastogenicity of 4NQO is cell-type dependent and linked to cytotoxicity, length of exposure and p53 proficiency. Mutagenesis 31:171–180

    Article  Google Scholar 

  4. Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58:235–263

    Article  CAS  Google Scholar 

  5. Claxton LD et al (2010) The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118:1515–1522

    Article  Google Scholar 

  6. Clements J (2000) The mouse lymphoma assay. Mutat Res Mol Mech Mutagen 455:97–110

    Article  CAS  Google Scholar 

  7. EFSA Scientific Committee (2011) Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J 9(9):2379

  8. Corvi R, Madia F (2017) In vitro genotoxicity testing–Can the performance be enhanced? Food Chem Toxicol 106:600–608

    Article  CAS  Google Scholar 

  9. Demir E, Castranova V (2016) Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay. Toxicol ReportsToxicol Rep 3:807–815

    Article  CAS  Google Scholar 

  10. Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  CAS  Google Scholar 

  11. Fenech M et al (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132

    Article  CAS  Google Scholar 

  12. Ferreira M et al (2009) Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Brazilian J Phys 39:564–569

    Article  CAS  Google Scholar 

  13. Fujiwara T et al (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  CAS  Google Scholar 

  14. Gatehouse D et al (1994) Recommendations for the performance of bacterial mutation assays. Mutat Res Mutagen Relat Subj 312:217–233

    CAS  Google Scholar 

  15. Ghazali, a R. et al (2011) Mutagenic and antimutagenic activities of Mitragyna speciosa Korth extract using Ames test. J Med Plants 5:1345–1348

    Google Scholar 

  16. Gilloteaux J et al (2018) Autoschizis: a mode of cell death of cancer cells induced by a pro-oxidant treatment in vitro and in vivo. In: Radosevich JA (ed) Apoptosis and beyond: the many ways cells die. Wiley-Blackwell, pp. 583–693

  17. Gizatullin FS, Babynin EV (1996) The selection-induced His+ reversion in Salmonella typhimurium. Mutat Res Fundam Mol Mech Mutagen 357:43–56

    Article  Google Scholar 

  18. Guo X et al (2018) Quantitative differentiation of whole smoke solution-induced mutagenicity in the mouse lymphoma assay. Environ Mol Mutagen 59:103–113

    Article  CAS  Google Scholar 

  19. Gupta RC (2019) Biomarkers in toxicology. Academic Press

  20. Ha G-H et al (2007) p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation. Cancer Res 67:7155–7164

    Article  CAS  Google Scholar 

  21. Hamel A et al (2016) The bacterial reverse mutation test. Genet Toxicol Test 79–138

  22. Hartwig A et al (2020) Mode of action-based risk assessment of genotoxic carcinogens. Springer, Berlin

    Google Scholar 

  23. Henegariu O et al (2001) Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytom J Int Soc Anal Cytol 43:101–109

    CAS  Google Scholar 

  24. van der Hoeven N et al (1990) Salmonella test: relation between mutagenicity and number of revertant colonies. Mutat Res 234:289–302

    Article  Google Scholar 

  25. Hoffmann GR, Fuchs RP (1997) Mechanisms of frameshift mutations: insight from aromatic amines. Chem Res Toxicol 10(4):347–359

  26. Howe B et al (2014) Chromosome preparation from cultured cells. J Vis Exp 83:e50203–e50203

  27. Hozier J et al (1981) Cytogenetic analysis of the L5178Y/TK+/−→ TK−/− mouse lymphoma mutagenesis assay system. Mutat Res Mol Mech Mutagen 84:169–181

    Article  CAS  Google Scholar 

  28. Ismun A et al (2018) Determination of polyphenol contents in Hevea brasiliensis and rubber-processing effluent. MJAS 22:185–196

    Google Scholar 

  29. Janion C et al (2002) Induction of the SOS response in starved Escherichia coli. Environ Mol Mutagen 40:129–133

    Article  CAS  Google Scholar 

  30. Kirsch-Volders M et al (2003) Indirect mechanisms of genotoxicity. Toxicol Lett 140–141:63–74

    Article  Google Scholar 

  31. Kirsch-Volders M et al (2014) Commentary: critical questions, misconceptions and a road map for improving the use of the lymphocyte cytokinesis-block micronucleus assay for in vivo biomonitoring of human exposure to genotoxic chemicals—a HUMN project perspective. Mutat Res Mutat Res 759:49–58

  32. Kuhnke L et al (2019) Mechanistic reactivity descriptors for the prediction of ames mutagenicity of primary aromatic amines. J Chem Inf Model 59:668–672

    Article  CAS  Google Scholar 

  33. Kumari S et al (2022) Unboxing the molecular modalities of mutagens in cancer. Environ Sci Pollut Res 29:62111–62159

    Article  CAS  Google Scholar 

  34. Lam KL et al (2012) Latex C-serum from Hevea brasiliensis induces non-apoptotic cell death in hepatocellular carcinoma cell line (HepG2). Cell Prolif 45:577–585

    Article  CAS  Google Scholar 

  35. Lee SW, Wendy W (2017) Malaysian rubber (Hevea brasiliensis) seed as alternative protein source for red hybrid tilapia, Oreochromis sp., farming. Aquac Aquarium Conserv Legis 10:32–37

    Google Scholar 

  36. Li Y et al (2003) Study on the mutagenicity of phenolic compounds by the Ames test. J Northeast Norm Univ Natural Sci Ed 35:82–85

    Google Scholar 

  37. Liengprayoon S et al (2017) Fractionation of Hevea brasiliensis latex by centrifugation: (i) a comprehensive description of the biochemical composition of the 4 centrifugation fractions. Proc Int Rubber Conf Jakarta 18–20:645–660

    Google Scholar 

  38. Lin H et al (2014) Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells. Toxicol Sci 139:338–349

    Article  CAS  Google Scholar 

  39. Madia F et al (2020) EURL ECVAM genotoxicity and carcinogenicity database of substances eliciting negative results in the Ames test: construction of the database. Mutat Res Toxicol Environ Mutagen 854–855:503199

    Article  Google Scholar 

  40. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res Mutagen Relat Subj 113:173–215

    CAS  Google Scholar 

  41. Maul RW, Sutton MD (2005) Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187:7607–7618

  42. Mellado-García P et al (2017) In vitro toxicological assessment of an organosulfur compound from Allium extract: cytotoxicity, mutagenicity and genotoxicity studies. Food Chem Toxicol 99:231–240

    Article  Google Scholar 

  43. Moore MM et al (2002) Mouse lymphoma thymidine kinase gene mutation assay: follow-up International Workshop on Genotoxicity Test Procedures, New Orleans, Louisiana, April 2000. Environ Mol Mutagen 40:292–299

    Article  CAS  Google Scholar 

  44. Moore MM et al (2007) Mouse lymphoma thymidine kinase gene mutation assay: meeting of the International Workshop on Genotoxicity Testing, San Francisco, 2005, recommendations for 24-h treatment. Mutat Res Toxicol Environ Mutagen 627:36–40

    Article  CAS  Google Scholar 

  45. Mortelmans K, Riccio ES (2000) The bacterial tryptophan reverse mutation assay with Escherichia coli WP2. Mutat Res Mol Mech Mutagen 455:61–69

    Article  CAS  Google Scholar 

  46. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res Mol Mech Mutagen 455:29–60

    Article  CAS  Google Scholar 

  47. Narkar A et al (2021) On the role of p53 in the cellular response to aneuploidy. Cell Rep 34:108892

    Article  CAS  Google Scholar 

  48. Nicolette J et al (2021) In vitro and in vivo mammalian mutation assays support a nonmutagenic mechanism of carcinogenicity for hydrazine. Environ Mol Mutagen 62:4–17

    Article  CAS  Google Scholar 

  49. OECD (1997) OECD Test No. 471: Bacterial Reverse Mutation Test. Organ Econ Co-operation Dev Publ 11

  50. OECD (2015a) Guidance document on revisions to OECD genetic toxicology test guidelines. Organ Econ Co-operation Dev Publ 1–58

  51. OECD (2015b) OECD Test No. 490: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene. Organ Econ Co-operation Dev Publ

  52. OECD (2016) In vitro mammalian cell micronucleus test. Vitr Mamm Cell Micronucleus Test

  53. OECD (2020) Guideline for testing of chemicals Test No 471: Bacterial Reverse Mutation Test. 24

  54. Oliver J et al (2006) SFTG international collaborative study on in vitro micronucleus test: V. Using L5178Y cells. Mutat Res Toxicol Environ Mutagen 607:125–152

    Article  CAS  Google Scholar 

  55. Ong JY et al (2021) Yeast grown in continuous culture systems can detect mutagens with improved sensitivity relative to the Ames test. PLoS ONE 16:e0235303

    Article  CAS  Google Scholar 

  56. Parmentier Y et al (2007) 5.10-In vitro studies of drug metabolism. In: Taylor JB, Triggle DJBT-CMCII (eds) Elsevier, Oxford, pp. 231–257

  57. Pfuhler S et al (2011) In vitro genotoxicity test approaches with better predictivity: summary of an IWGT workshop. Mutat Res Toxicol Environ Mutagen 723:101–107

    Article  CAS  Google Scholar 

  58. Richardson SJ et al (2016) Efficiency in drug discovery: liver S9 fraction assay as a screen for metabolic stability. Drug Metab Lett 10:83–90

    Article  CAS  Google Scholar 

  59. Salazar AM et al (2009) Relationship between micronuclei formation and p53 induction. Mutat Res Genet Toxicol Environ Mutagen 672:124–128

    Article  CAS  Google Scholar 

  60. Sarov-Blat L, Livneh Z (1998) The mutagenesis protein MucB interactions with single strand DNA binding protein and induces a major conformational change in its complex with single-stranded DNA. J Biol Chem 273:5520–5527

    Article  CAS  Google Scholar 

  61. Sharma V et al (2021) A comprehensive review on fused heterocyclic as DNA intercalators: promising anticancer agents. Curr Pharm Des 27:15–42

    Article  CAS  Google Scholar 

  62. Sikora A et al (2012) Bacterial systems for testing spontaneous and induced mutations. Mutagenesis 153–178

  63. Singer VL et al (1999) Comparison of SYBR® Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat Res Toxicol Environ Mutagen 439:37–47

    Article  CAS  Google Scholar 

  64. Słoczyńska K et al (2014) Antimutagenic compounds and their possible mechanisms of action. J Appl Genet 55:273–285

    Article  Google Scholar 

  65. Sommer S et al (2020) Micronucleus assay: the state of art, and future directions. Int J Mol Sci 21:1534

    Article  CAS  Google Scholar 

  66. Sprenger H et al (2022) Use of transcriptomics in hazard identification and next generation risk assessment: a case study with clothianidin. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 166:113212

    Article  CAS  Google Scholar 

  67. Stewart ZA et al (2001) Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor-and cell-specific manner. Oncogene 20:113–124

    Article  CAS  Google Scholar 

  68. Sunderasan E et al (2013) Cell viability assay guided fractionation of natural rubber latex sera. J Rubber Res 16:3

    Google Scholar 

  69. Tan D et al (2017) Comparative morphology and transcriptome analysis reveals distinct functions of the primary and secondary laticifer cells in the rubber tree. Sci Rep 7:1–17

    Google Scholar 

  70. Tejs S (2008) The Ames test: a methodological short review. Environ Biotechnol 4:7–14

    Google Scholar 

  71. Tice RR et al (2012) Genotoxic effects of airborne agents. Springer Science & Business Media, New York

    Google Scholar 

  72. Tidd DM, Paterson AR (1974) Distinction between inhibition of purine nucleotide synthesis and the delayed cytotoxic reaction of 6-mercaptopurine. Cancer Res 34:733–737

    CAS  Google Scholar 

  73. Wakabayashi K et al (1989) Mutagens and carcinogens produced by the reaction of environmental aromatic compounds with nitrite. Cancer Surv 8:385–399

    CAS  Google Scholar 

  74. Yeang HY et al (2002) Allergenic proteins of natural rubber latex. Methods 27:32–45

    Article  CAS  Google Scholar 

  75. Zeiger E, Hoffmann GR (2012) An illusion of hormesis in the Ames test: Statistical significance is not equivalent to biological significance. Mutat Res Genet Toxicol Environ Mutagen 746:89–93

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Malaysia Ministry of Higher Education under the Fundamental Research Grant Scheme (FRGS/1/2014/SG03/USM/02/1) and the Malaysian Rubber Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Thong Ong.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, M.D., Abd Rahman, N., Elumalai, S. et al. Hevea brasiliensis latex dialysed C-serum precipitate subfraction exerts a negligible level of genotoxicity in the Ames test, mouse lymphoma assay and micronucleus assay. J Rubber Res 26, 139–153 (2023). https://doi.org/10.1007/s42464-023-00201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-023-00201-x

Keywords

Navigation