Skip to main content
Log in

Distribution of the non-isoprene components in the four Hevea brasiliensis latex centrifugation fractions

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

This work is part of a larger project aiming at elucidating the mechanisms by which the biochemical components naturally occurring in Hevea brasiliensis latex influence the structuration of natural rubber (NR). To achieve this overall objective, our strategy consists of measuring the physical properties of NR samples made of reconstructed lattices which were obtained by mixing different proportions of C-serum and bottom fraction (lutoids) to rubber fraction made of small and large particles. This work represents the first step of the above-mentioned project where we carried out a systematic study to identify and locate the main biochemical components of latex that might drive NR structuration. Fresh latex from RRIM600 and PB235 clones was fractionated by centrifugation into 4 fractions: large rubber particles, small rubber particles, C-serum and bottom fraction (lutoids + Frey-Wyssling particles). The fractions were further analyzed to provide a comprehensive description of their biochemical composition (lipids, proteins, minerals) in comparison with the original whole latex. The results gathered in this work are essential for further study of the quantitative influence of each component on NR structuration and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tanaka Y, Tarachiwin L (2009) Recent advances in structural characterization of natural rubber. Rubber Chem Technol 82:283–314. https://doi.org/10.5254/1.3548250

    Article  CAS  Google Scholar 

  2. Tarachiwin L, Sakdapipanich J, Ute K et al (2005) Structural characterization of alpha-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromol 6:1851–1857. https://doi.org/10.1021/bm058003x

    Article  CAS  Google Scholar 

  3. Tarachiwin L, Sakdapipanich J, Ute K et al (2005) Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromol 6:1858–1863. https://doi.org/10.1021/bm058004p

    Article  CAS  Google Scholar 

  4. Huang C, Zhang J, Cai X et al (2020) The effects of proteins and phospholipids on the network structure of natural rubber: a rheological study in bulk and in solution. J Polym Res 27:158. https://doi.org/10.1007/s10965-020-02147-9

    Article  CAS  Google Scholar 

  5. Rolere S, Bottier C, Vaysse L et al (2016) Characterisation of macrogel composition from industrial natural rubber samples: influence of proteins on the macrogel crosslink density. Express Polym Lett 10:408–419. https://doi.org/10.3144/expresspolymlett.2016.38

    Article  CAS  Google Scholar 

  6. Cook AS, Sekhar BC (1954) Fractions from Hevea brasiliensis latex centrifuged at 59,000g. Rubber Chem Technol 27:297–301

    Article  CAS  Google Scholar 

  7. Moir GFJ (1959) Ultracentrifugation and staining of Hevea latex. Nature 184:1626–1628

    Article  Google Scholar 

  8. Archer BL, Barnard D, Cockbain EG et al. (1963) Chapter 3: Structure, composition and biochemistry of Hevea latex. In: Bateman L (ed) The Chemistry and Physics of Rubber-Like Substances Sutides of the Natural Rubber Producers' Research Association Sons Ltd, London and John Wiley & Sons, New York. pp 41–72

  9. Hasma H (1983) Lipids in the latex and rubber of Hevea brasiliensis Muell. Arg. and their effects on some properties of natural rubber. PhD Thesis of Ghent University

  10. Thomas M, Nair NU, Sreelatha S et al (1990) Clonal variations in lipid composition of Hevea brasiliensis at young stage. Indian J Nat Rubb Res 3:73–75

    Google Scholar 

  11. Yip E (1990) Clonal characterization of latex and rubber properties. J Nat Rubber Res 5:52–80

    CAS  Google Scholar 

  12. Nair NU, Thomas M, Sreelatha S et al (1993) Clonal variation in lipid composition in the latex of Hevea brasiliensis and its implication in latex production. Indian J Nat Rubber Res 6:143–145

    CAS  Google Scholar 

  13. Liengprayoon S, Chaiyut J, Sriroth K et al (2013) Lipid compositions of latex and sheet rubber from Hevea brasiliensis depend on clonal origin. Eur J Lipid Sci Technol 115:1021–1031. https://doi.org/10.1002/ejlt.201300023

    Article  CAS  Google Scholar 

  14. Jacob JL, D’Auzac J, Prevôt JC (1993) The composition of natural latex from Hevea brasiliensis. Clin Rev Allergy 11:325–337. https://doi.org/10.1007/BF02914415

    Article  CAS  Google Scholar 

  15. Wititsuwaannakul D, Rattanapittayaporn A, Koyama T, Wititsuwaannakul R (2004) Involvement of Hevea latex organelle membrane proteins in the rubber biosynthesis activity and regulatory function. Macromol Biosci 4:314–323. https://doi.org/10.1002/mabi.200300080

    Article  CAS  Google Scholar 

  16. Wang D, Sun Y, Chang L et al (2018) Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis. J Proteomics 182:53–64. https://doi.org/10.1016/j.jprot.2018.05.002

    Article  CAS  Google Scholar 

  17. Hasma H (1991) Lipids associated with rubber particles and their possible role in mechanical stability of latex concentrates. J Nat Rubber Res 6:105–114

    CAS  Google Scholar 

  18. Nun-anan P, Wisunthorn S, Pichaiyut S et al (2020) Influence of nonrubber components on properties of unvulcanized natural rubber. Polym Adv Technol 31:44–59. https://doi.org/10.1002/pat.4746

    Article  CAS  Google Scholar 

  19. Chaiyut J, Liengprayoon S, Bottier C et al. (2017) Fractionnation of Hevea brasiliensis latex by centrifugation: (ii) a mean to locate the drivers of natural rubber unique structure and properties? In: Conference at International Rubber Researach and Development Board. Jakarta, pp 661–678

  20. Srisomboon S, Wadeesirisak K, Vaysse L et al (2021) Optimization of a protein extraction method from natural rubber sheets made of Hevea brasiliensis latex. J Rubber Res 24:27–39. https://doi.org/10.1007/s42464-020-00069-1

    Article  CAS  Google Scholar 

  21. Sakdapipanich JT, Suksujaritporn S, Tanaka Y (1999) Structural characterization of the small rubber particles in fresh Hevea latex. J Rubber Res 2:160–168. https://doi.org/10.5254/1.3544971

    Article  CAS  Google Scholar 

  22. Rippel MM, Lee L-T, Leite CAP, Galembeck F (2003) Skim and cream natural rubber particles: colloidal properties, coalescence and film formation. J Colloid Interface Sci 268:330–340. https://doi.org/10.1016/j.jcis.2003.07.046

    Article  CAS  Google Scholar 

  23. Wisunthorn S, Bonfils F, Pochat-Bohatier C et al (2008) Comparative study of the elasticity and permeability of vulcanized films made with skim and cream natural rubber latex. J Appl Polym Sci 108:960–968. https://doi.org/10.1002/app

    Article  Google Scholar 

  24. Chan AJ, Steenkeste K, Eloy M et al (2015) Lipid content in small and large natural rubber particles. Rubber Chem Technol 88:248–257. https://doi.org/10.5254/rct.15.85938

    Article  CAS  Google Scholar 

  25. Yamashita S, Mizuno M, Hayashi H et al (2018) Purification and characterization of small and large rubber particles from Hevea brasiliensis. Biosci Biotechnol Biochem 82:1011–1020. https://doi.org/10.1080/09168451.2017.1401913

    Article  CAS  Google Scholar 

  26. Sriring M, Nimpaiboon A, Kumarn S et al (2018) Viscoelastic and mechanical properties of large- and small-particle natural rubber before and after vulcanization. Polym Testing 70:127–134. https://doi.org/10.1016/j.polymertesting.2018.06.026

    Article  CAS  Google Scholar 

  27. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  28. Liengprayoon S, Bonfils F, Sainte-Beuve J et al (2008) Development of a new procedure for lipid extraction from Hevea brasiliensis natural rubber. Eur J Lipid Sci Technol 110:563–569. https://doi.org/10.1002/ejlt.200700287

    Article  CAS  Google Scholar 

  29. Wadeesirisak K, Castano S, Berthelot K et al (2017) Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex. Biochim Biophys Acta 1859:201–210. https://doi.org/10.1016/j.bbamem.2016.11.010

    Article  CAS  Google Scholar 

  30. Liengprayoon S (2008) Characterization of lipid composition of sheet rubber from Hevea brasiliensis and relations with its structure and properties. PhD Thesis of Montpellier University

  31. Tang C, Yang M, Fang Y et al (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:1–42. https://doi.org/10.1038/NPLANTS.2016.73

    Article  Google Scholar 

  32. Dennis MS, Light DR (1989) Rubber elongation factor from H. brasiliensis. J Biol Chem 264:18608–18617

    Article  CAS  Google Scholar 

  33. Oh SK, Kang H, Shin DH et al (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274:17132–17138. https://doi.org/10.1074/jbc.274.24.17132

    Article  CAS  Google Scholar 

  34. Yeang HY, Cheong KF, Sunderasan E et al (1996) The 14.6 kd rubber elongation factor (Hev b 1) and 24 kd (Hev b 3) rubber particle proteins are recognized by IgE from patients with spina bifida and latex allergy. J Allergy Clin Immunol 98:628–639. https://doi.org/10.1016/S0091-6749(96)70097-0

    Article  CAS  Google Scholar 

  35. Singh AP, Wi SG, Chung GC et al (2003) The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J Exp Bot 54:985–992. https://doi.org/10.1093/jxb/erg107

    Article  CAS  Google Scholar 

  36. Bahri ARS, Hamzah S (1996) Immunocytochemical localisation of rubber membrane protein in Hevea latex. J Nat Rubb Res 11:88–95

    CAS  Google Scholar 

  37. Kekwick R, Bhambri S, Chabane MH et al (1996) The allergenic properties of fresh and preserved Hevea brasiliensis latex protein preparations. Clin Exp Immunol 104:337–342. https://doi.org/10.1046/j.1365-2249.1996.24731.x

    Article  CAS  Google Scholar 

  38. Wang X, Shi M, Lu X et al (2010) A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS. Proteome Sci 8:35–45. https://doi.org/10.1186/1477-5956-8-35

    Article  CAS  Google Scholar 

  39. Churngchow N, Suntaro A, Wititsuwannakul R (1995) beta-1,3-glucanase isozymes from the latex of Hevea brasiliensis. Phytochem 39:505–509. https://doi.org/10.1016/0031-9422(95)00974-C

    Article  CAS  Google Scholar 

  40. Subroto T, Koningsveld GA, Schreuder HA, Soedjanaatmadja UMS (1996) Chitinase and beta-1,3 glucanase in the lutoid-body fraction of Hevea latex. Phytochem 43:29–37. https://doi.org/10.1016/0031-9422(96)00196-3

    Article  CAS  Google Scholar 

  41. van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree latex. Planta 183:258–264

    Article  Google Scholar 

  42. Arreguín B, Lara P, Rodríguez R (1988) Comparative study of electrophoretic patterns of latex proteins from clones of Hevea brasiliensis. Electrophoresis 9:323–326. https://doi.org/10.1002/elps.1150090707

    Article  Google Scholar 

  43. Nawamawat K, Sakdapipanich JT, Ho CC et al (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf A 390:157–166. https://doi.org/10.1016/j.colsurfa.2011.09.021

    Article  CAS  Google Scholar 

  44. Guo Y, Cordes KR, Farese RV, Walther JTC (2009) Lipid droplets at a glance. J Cell Sci 122:749–752. https://doi.org/10.1242/jcs.037630

    Article  CAS  Google Scholar 

  45. Siler DJ, Goodrich-Tanrikulu M, Cornish K et al (1997) Composition of rubber particles of Hevea brasiliensis, Parthenium argentatum, Ficus elastica, and Euphorbia lactiflua indicates unconventional surface structure. Plant Physiol Biochem 35:881–889

    CAS  Google Scholar 

  46. Dupont J, Moreau F, Lance C, Jacob JL (1976) Phospholipid composition of the membrane of lutoids from Hevea brasiliensis latex. Phytochemistry 15:1215–1217. https://doi.org/10.1016/0031-9422(76)85080-7

    Article  CAS  Google Scholar 

  47. Brandenburg K, Holst O (2001) Glycolipids: distribution and biological function. In: ELS. John Wiley & Sons, New York, pp 1–10

  48. Hannich JT, Umebayashi K, Riezman H (2011) Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 3:1–14. https://doi.org/10.1101/cshperspect.a004762

    Article  CAS  Google Scholar 

  49. Yip E, Gomez JB (1980) Factors influencing the colloidal stability of fresh clonal Hevea latices as determined by the aerosol OT test. J Rubber Res Inst Malaya 28:86–106

    CAS  Google Scholar 

  50. D’Auzac J, Jacob J-L (1989) The composition of latex from hevea brasiliensis as a laticiferous cytoplasm. In: Physiol. Rubber tree latex, pp 59–96

Download references

Acknowledgements

The authors thank ANR agency for financial support of the RUBBex-ANR 14-CE07-0026-02 project. Thailand International Cooperation Agency (TICA) is acknowledged for financial support of the field trips. The authors would like to thank Visahakit Thai Rubber Co., Ltd. for kindly providing samples. Agropolis Fondation is thanked for the support to the creation of LipPolGreen-Asia platform in Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Bangkok. This work was undertaken as part of the Hevea Research Platform in Partnership (HRPP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siriluck Liengprayoon or Céline Bottier.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liengprayoon, S., Vaysse, L., Jantarasunthorn, S. et al. Distribution of the non-isoprene components in the four Hevea brasiliensis latex centrifugation fractions. J Rubber Res 24, 759–769 (2021). https://doi.org/10.1007/s42464-021-00133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-021-00133-4

Keywords

Navigation