Skip to main content

Advertisement

Log in

Progress of Rectenna Arrays for Microwave Power Transmission Systems

  • Review
  • Published:
Advances in Astronautics Science and Technology Aims and scope Submit manuscript

Abstract

Microwave power transmission (MPT) technology has been proposed to supply power to the long-reached systems, such as high altitude airships, unmanned vehicles, and far-reached wireless sensor networks, etc., and it is also the key technology of the solar power stations (SPS). Rectenna array, receiving the microwave (MW) and convert it into the direct current (DC) power, is one main component of an MPT system. In this paper, the development of rectenna arrays are reviewed. Second, the recent research work of rectennas and rectenna arrays at C-, X- and Ka-bands at Shanghai University are illustrated. Thirdly, based on the experimental results and reasonable evaluation, the designs of rectenna arrays for 1 kW DC power at different bands are evaluated and analyzed. Finally, prospects and challenges of rectenna array and MPT technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

MPT:

Microwave power transmission

SPS:

Solar power stations

MW:

Microwave

DC:

Direct Current

EM:

Electromagnetic

BCE:

Beam collection efficiency

PCB:

Printed circuit board

ETHER:

Energy Transmission toward High-altitude long endurance airship ExpeRiment

MILAX:

MIcrowave Lifted Airplane eXperiment

SMA:

Sub-miniature version A

CPW:

CoPlanar Waveguide

SIW:

Substrate integrated waveguide

References

  1. Brown WC (1974) The technology and application of free-space power transmission by microwave beam. Proc IEEE 62(1):11–25

    Article  Google Scholar 

  2. Brown WC (1984) The history of power transmission by radio waves. IEEE Trans Microw Theory Tech 32(9):1230–1242

    Article  Google Scholar 

  3. Osepchuk JM (2002) Microwave power application. IEEE Trans Microw Theory Tech 50(3):975–985

    Article  Google Scholar 

  4. Kobayashi Y, Hori M, Noji H et al (2012) The S-band GaN based high power amplifier and rectenna for space energy transfer applications. In: IEEE MTT-S international microwave workshop series on innovative wireless power transmission: technologies, systems, and applications, pp 271–274

  5. Giofrè R, Colangeli S, Ciccognani W et al (2018) S-band GaN single-chip front end for active electronically scanned array with 40-W output power and 1.75-dB noise figure. IEEE Trans Microw Theory Tech 66(12):5696–5707

    Article  Google Scholar 

  6. Takeshita S (1968) Power transfer efficiency between focused circular antennas with Gaussian illumination in Fresnel region. IEEE Trans Antennas Propag 16(3):305–309

    Article  Google Scholar 

  7. Baki AKM, Shinohara N, Matsumoto H et al (2007) Study of isosceles trapezoidal edge tapered phased array antenna for solar power station/satellite. IEICE Trans Commun 90(4):968–977

    Article  Google Scholar 

  8. Zhou H, Yang X, Sajjad R (2018) Synthesis of the sparse uniform-amplitude concentric ring transmitting array for optimal microwave power transmission. Int J Antennas Propag 2018:1–8

    Google Scholar 

  9. Li X, Luk KM, Duan B (2019) Multiobjective optimal antenna synthesis for microwave wireless power transmission. IEEE Trans Antennas Propag 67(4):2739–2744

    Article  Google Scholar 

  10. Kojima S, Mitani T, Shinohara N (2020) Array optimization for maximum beam collection efficiency to an arbitrary receiving plane in the near field. IEEE Open J Antennas Propag 2:95–103

    Article  Google Scholar 

  11. Rodenbeck CT, Li MY, Chang K (2004) A phased-array architecture for retrodirective microwave power transmission from the space solar power satellite. In: 2004 IEEE MTT-S international microwave symposium digest (IEEE Cat. No. 04CH37535), vol 3. IEEE, pp 1679–1682

  12. Li Y, Jandhyala V (2011) Design of retrodirective antenna arrays for short-range wireless power transmission. IEEE Trans Antennas Propag 60(1):206–211

    Article  Google Scholar 

  13. Mihara S, Maekawa K, Nakamura S et al (2018) The plan of microwave power transmission development for SSPS and its industry application. In: 2018 Asia-Pacific microwave conference (APMC). IEEE, pp 443–445

  14. Idrees S, Zhou X, Durrani S et al (2020) Design of ambient backscatter training for wireless power transfer. IEEE Trans Wirel Commun 19(10):6316–6330

    Article  Google Scholar 

  15. Sasaki T, Shinohara N (2018) Study on multipath retrodirective for microwave power transmission. In: 2018 IEEE wireless power transfer conference (WPTC). IEEE, pp 1–4

  16. Belo D, Ribeiro DC, Pinho P et al (2019) A selective, tracking, and power adaptive far-field wireless power transfer system. IEEE Trans Microw Theory Tech 67(9):3856–3866

    Article  Google Scholar 

  17. Epp LW, Khan AR, Smith HK et al (2000) A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications. IEEE Trans Microw Theory Tech 48(1):111–120

    Article  Google Scholar 

  18. Yang XX, Jiang C, Elsherbeni AZ et al (2013) A novel compact printed rectenna for data communication systems. IEEE Trans Antennas Propag 61(5):2532–2539

    Article  Google Scholar 

  19. Hatano K, Shinohara N, Seki T et al (2013) Development of MMIC rectenna at 24 GHz. In: 2013 IEEE radio and wireless symposium. IEEE, pp 199–201

  20. Wang C, Yang B, Kojima S et al (2019) The application of GHz band charge pump rectifier and rectenna array for satellite internal wireless system. Wirel Power Transf 6(2):190–195

    Article  Google Scholar 

  21. Wang C, Yang B, Shinohara N (2020) Study and design of a 2.45-GHz rectifier achieving 91% efficiency at 5-W input power. IEEE Microw Wirel Compon Lett 31(1):76–79

    Article  Google Scholar 

  22. Brown WC, George RH (1964) Rectification of microwave power. IEEE Spectr 1(10):92–97

    Article  Google Scholar 

  23. Zhang B, Jiang W, Yang Y et al (2015) Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level. Int J Electron 102(11):1818–1830

    Article  Google Scholar 

  24. Song K et al (2019) Preliminary operational aspects of microwave powered airship drone. Int J Micro Air Veh 11:1–10

    Google Scholar 

  25. Moro R, Keicho N, Motozuka K et al (2021) 28 GHz microwave power beaming to a free-flight drone. In: 2021 IEEE wireless power transfer conference (WPTC). IEEE, pp 1–4

  26. Fujino Y (1993) A rectenna for MILAX. In: Proc. wireless power transmiss. conf., pp 273–277

  27. Kaya N, Ida S, Fujino Y et al (1996) Transmitting antenna system for airship demonstration (ETHER). Space Energy Transp 1(4):237–245

    Google Scholar 

  28. Fujino Y, Fujita M, Kaya N et al (2000) An experiment on the polarization angle characteristics of a dual polarization rectenna. Electron Commun Japan (Part I: Communications) 83(5):1–14

    Article  Google Scholar 

  29. Epp L, Khan W et al (2000) A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications. IEEE Trans Microw Theory Tech 48(1):111–120

    Article  Google Scholar 

  30. Sun H, He H, Huang J (2020) Polarization-insensitive rectenna arrays with different power combining strategies. IEEE Antennas Wirel Propag Lett 19(3):492–496

    Article  Google Scholar 

  31. Hu YY, Sun S, Wu H et al (2021) Integrated coupler-antenna design for multi-beam dual-polarized patch-array rectenna. IEEE Trans Antennas Propag 70(3):1869–1883

    Article  Google Scholar 

  32. Zhu GL, Du JX, Yang XX et al (2019) Dual-polarized communication rectenna array for simultaneous wireless information and power transmission. IEEE Access 7:141978–141986

    Article  Google Scholar 

  33. Park Y, Youii D (2020) kW-class wireless power transmission based on microwave beam. In: 2020 IEEE wireless power transfer conference (WPTC). IEEE, pp 5–8

  34. Lee CH, Chang YH (2015) Design of a broadband circularly polarized rectenna for microwave power transmission. Microw Opt Technol Lett 57(3):702–706

    Article  Google Scholar 

  35. Song C, Huang Y, Carter P et al (2016) A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans Antennas Propag 64(7):3160–3171

    Article  Google Scholar 

  36. Strassner B, Chang K (2003) Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission. IEEE Trans Antennas Propag 51(6):1347–1356

    Article  Google Scholar 

  37. Strassner B, Chang K (2003) 5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications. IEEE Trans Microw Theory Tech 51(5):1548–1553

    Article  Google Scholar 

  38. Ren YJ, Chang K (2006) New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission. IEEE Trans Microw Theory Tech 54(7):2970–2976

    Article  Google Scholar 

  39. Ren YJ, Chang K (2006) 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans Microw Theory Tech 54(4):1495–1502

    Article  Google Scholar 

  40. Hagerty JA, Helmbrecht FB, McCalpin WH et al (2004) Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans Microw Theory Tech 52(3):1014–1024

    Article  Google Scholar 

  41. Yang Y, Li J, Li L et al (2018) A 5.8 GHz circularly polarized rectenna with harmonic suppression and rectenna array for wireless power transfer. IEEE Antennas Wirel Propag Lett 17(7):1276–1280

    Article  MathSciNet  Google Scholar 

  42. Nie MJ, Yang XX, Tan GN et al (2015) A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide. IEEE Antennas Wirel Propag Lett 14:986–989

    Article  Google Scholar 

  43. Liu Y, Huang K, Yang Y et al (2018) A low-profile lightweight circularly polarized rectenna array based on coplanar waveguide. IEEE Antennas Wirel Propag Lett 17(9):1659–1663

    Article  Google Scholar 

  44. Dong Y, Dong SW, Wang Y et al (2018) Focused microwave power transmission system with high efficiency rectifying surface. IET Microw Antennas Propag 12(5):808–813

    Article  Google Scholar 

  45. Yang B, Chen X, Chu J et al (2020) A 5.8-GHz phased array system using power variable phase-controlled magnetrons for wireless power transfer. IEEE Trans Microw Theory Tech 68(11):4951–4959

    Article  Google Scholar 

  46. Xu C, Xu J, Xu D (2000) The exciting device of microwave energy supply system for in pipe inspect micro-machine. J Shanghai Univ (Natural Science) 6(5):403–406

    Google Scholar 

  47. Xu J, Xu D, Yang X et al (2006) Full-wave analysis and design of microstrip antenna in-pipe for rectenna using FDTD method. J Shanghai Univ (English Edition) 10(4):330–333

    Article  Google Scholar 

  48. Li L, Du J, Yang XX (2019) Dual polarized rectenna and array at X-band with high-efficiency. In: 2019 international conference on microwave and millimeter wave technology (ICMMT). IEEE, pp 1–3

  49. Tan GN, Yang XX, Mei H et al (2016) Study on millimeter-wave vivaldi rectenna and arrays with high conversion efficiency. Int J Antennas Propag 2016(1):1–8

    Google Scholar 

  50. Wang Y, Yang XX, Tan GN et al (2021) Study on millimeter-wave SIW rectenna and arrays with high conversion efficiency. IEEE Trans Antenna Propag 69(9):5503–5511

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China, Grant Number 62171270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Xia Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Yang, XX. Progress of Rectenna Arrays for Microwave Power Transmission Systems. Adv. Astronaut. Sci. Technol. 5, 49–58 (2022). https://doi.org/10.1007/s42423-022-00100-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42423-022-00100-0

Keywords

Navigation