Skip to main content
Log in

Challenges of the SAR-Enabled Microsatellite Concept INFANTE

  • Review
  • Published:
Advances in Astronautics Science and Technology Aims and scope Submit manuscript

Abstract

The INFANTE project is a public–private initiative arising from the experience of Portuguese companies and R&D institutes in developing critical subsystems for space missions over the last 20 years. Using such building blocks, TEKEVER leads a consortium of 20+ entities currently developing a technology demonstrator microsatellite for Earth Observation. This paper addresses a set of technical challenges faced in the conceptualization of a satellite-borne SAR, along with new project-level approaches within the framework of new space while managing a large consortium of partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

ADS-B:

Automatic dependent surveillance broadcast

AIT:

Assembly, integration and testing

AIS:

Automatic identification system

COTS:

Commercial off-the shelf

EO:

Earth Observation

GNSS:

Global navigation satellite system

LEO:

Low-earth orbit

LTAN:

Local time of the ascending node

OBC:

On-board computer

R&D:

Research and development

RF:

Radio frequency

SAR:

Synthetic aperture radar

SDR:

Software-defined radio

SSO:

Sun-synchronous orbit

TMTC:

Telemetry and telecontrol

TRL:

Technology readiness level

References

  1. Cunha FV et al (2017) Towards an early warning service for fast-developing events based on a SAR-enabled microsatellite constellation. In: 68th International Astronautical Congress, IAF, Adelaide, Australia, 2017

  2. Rodrigues P, Oliveira A, Mendes R (2011) SDR-based ad hoc space networks (SASNETs). In: 62nd International Astronautical Congress, IAF, Cape Town, South Africa, 2011

  3. Rodrigues P et al (2015) Cognitive radio for SatCom applications: the screen project. In: 66th International Astronautical Congress, IAF, Jerusalem, Israel, 2015

  4. Pitz W, Miller D (2010) The TerraSAR-X satellite. IEEE Trans Geosci Remote Sens 48(2):615–622. https://doi.org/10.1109/TGRS.2009.2037432

    Article  Google Scholar 

  5. Covello F et al (2010) COSMO-SkyMed an existing opportunity for observing the earth. J Geodyn 49(3–4):171–180. https://doi.org/10.1016/j.jog.2010.01.001

    Article  Google Scholar 

  6. Desnos YL et al (2000) The ENVISAT advanced synthetic aperture radar system. In: IEEE 2000 international geoscience and remote sensing symposium, vol 3, 2000, pp 1171–1173. https://doi.org/10.1109/IGARSS.2000.858057

  7. Raney RK, Luscombe AP, Langham EJ, Ahmed S (1991) RADARSAT (SAR imaging). Proc IEEE 79(6):839–849. https://doi.org/10.1109/5.90162

    Article  Google Scholar 

  8. Bird R et al (2013) NovaSAR-S: a low cost approach to SAR applications. In: Conference proceedings of 2013 Asia-Pacific conference on synthetic aperture radar, IEEE, Tsukuba, Japan, 2013

  9. Born GH, Dunne JA, Lame DB (1979) Seasat mission overview. Science 204(4400):1405–1406. https://doi.org/10.1126/science.204.4400.1405

    Article  Google Scholar 

  10. Rosenqvist A, Shimada M, Ito N, Watanabe M (2007) ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Remote Sens 45(11):3307–3316. https://doi.org/10.1109/TGRS.2007.901027

    Article  Google Scholar 

  11. Lavender S et al (2016) Understanding the future market for NovaSAR-S flood mapping products using data mining and simulation. In: Living Planet symposium, ESA, Prague, Czech Republic, 2016

  12. Hirako K et al (2018) Development of small satellite for X-Band compact synthetic aperture radar. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1130/1/012013

    Article  Google Scholar 

  13. Saito H et al (2018) Engineering-model results of X-band synthetic aperture radar for small satellite and its application to constellation mission. In: Proceedings of the 32nd AIAA/USU conference on small satellites, SSC18-VII-01, Logan, Utah, 2018

  14. Urata K, Sumantyo J, Santosa C, Viscor T (2018) Development of an L-band SAR microsatellite antenna for Earth Observation. Aerospace. https://doi.org/10.3390/aerospace5040128

    Article  Google Scholar 

  15. Urata K, Sumantyo J, Santosa C, Viscor T (2019) A compact C-Band CP-SAR microsatellite antenna for Earth Observation. Acta Astronaut 159:517–526. https://doi.org/10.1016/j.actaastro.2019.01.030

    Article  Google Scholar 

  16. Kurniawan F et al (2019) Circularly polarized array antenna using the sequential rotation network feeding for X-band communication. Prog Electromagn Res 94:203–217. https://doi.org/10.2528/PIERC19051703

    Article  Google Scholar 

  17. Korczyk J (2016) Reliable on board data processing system for the ICEYE-1 satellite. Master’s Thesis, KTH, School of Information and Communication Technology, 2016

  18. Stringham C et al (2019) The Capella X-band SAR constellation for rapid imaging. In: IGARSS 2019–2019 ieee international geoscience and remote sensing symposium, Yokohama, Japan, 2019. https://doi.org/10.1109/IGARSS.2019.8900410

  19. California Polytechnic State University (2018) CubeSat design specification 6U CDS 2018-06-07”, 2018

  20. Rufino J, Craveiro J, Schoofs T, Tatibana C, Windsor J (2009) AIR technology: a step towards ARINC 653 in space. In: DASIA 2009—data systems in aerospace, Istanbul, Turkey, 2009

  21. Murta L, Silveira D, Sánchez C, Silva J (2019) Porting the AIR TSP to the ARM architecture with the MIURA1 OBSW as user case. In: DASIA 2019—data systems in aerospace, Málaga, Spain, 2019

  22. Murta L, Silveira D, Ferreira JP (2020) Managing INFANTE’s payload bay experiments using the air hypervisor. In: DASIA 2020—data systems in aerospace, Bucharest, Romania, 2020 (Postponed to 2021)

  23. Silveira D, Murta L, Ferreira JP (2020) AIR and INFANTE: technology demonstration of small missions using time space partitioning to manage multiple payloads. In: SECESA 2020—9th international systems and concurrent engineering for space applications conference, 2020 (Pending)

  24. Durães L et al (2012) Effect of the drying conditions on the microstructure of silica based xerogels and aerogels. J Nanosci Nanotechnol 12:6828–6834. https://doi.org/10.1166/jnn.2012.4560

    Article  Google Scholar 

  25. Ochoa M et al (2012) Study of the suitability of silica based xerogels synthesized using ethyltrimethoxysilane and methyltrimethoxysilane precursors for aerospace applications. J Sol-Gel Sci Technol 61:151–160. https://doi.org/10.1007/s10971-011-2604-7

    Article  Google Scholar 

  26. Ochoa M et al (2019) Influence of structure-directing additives on the properties of poly(methylsilsesquioxane) aerogel-like materials. Gels. https://doi.org/10.3390/gels5010006

    Article  Google Scholar 

  27. Simões F et al (2020) Recursive method to compute statistical moments, covariance and correlation in acquisition and data analysis. Patent 20202001121187, 2020 (Patent pending)

  28. Daniel V et al (2019) In-orbit commissioning of Czech nanosatellite VZLUSAT-1 for the QB50 mission with a demonstrator of a miniaturised lobster-eye X-ray telescope and radiation shielding composite materials. Space Sci Rev. https://doi.org/10.1007/s11214-019-0589-7

    Article  Google Scholar 

  29. Chen S, Bourham M, Rabiei A (2015) Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiat Phys Chem 117:12–22. https://doi.org/10.1016/j.radphyschem.2015.07.003

    Article  Google Scholar 

  30. Paz E, Ferreira R, Freitas PP (2019) Tuning the linear range of magnetic sensors based on MTJs. In: Spintronics XII, vol 11090, 2019. https://doi.org/10.1117/12.2529412

  31. Böhnert T et al (2017) Magnetic tunnel junctions with integrated thermometers for magnetothermopower measurements. J Phys Condens Matter. https://doi.org/10.1088/1361-648X/aa63ab

    Article  Google Scholar 

  32. Santos N et al (2020) Thermal blanket with low RF reflectivity. In: AUXDEFENSE 2020—2nd world conference on advanced materials for defense, 2020

  33. Santos N et al (2018) Thermal multi-layer insulation and radio-frequency absorber blanket. Patent WO/2018/146651A, 2018

  34. Picone JM et al (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  35. European Cooperation for Space Standardization (2012) ECSS-E-ST-10-03C—testing (1 June 2012), 2012

Download references

Acknowledgements

This article is a result of the project 24534—INFANTE, supported by the Operational Program for Competitiveness and Internationalization (COMPETE 2020) and Lisbon Regional Operational Program (Lisboa 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José P. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, J.P., Andrada, N., Correia, B. et al. Challenges of the SAR-Enabled Microsatellite Concept INFANTE. Adv. Astronaut. Sci. Technol. 5, 167–182 (2022). https://doi.org/10.1007/s42423-021-00085-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42423-021-00085-2

Keywords

Navigation