Skip to main content
Log in

Three-Dimensional Shock-Wave/Boundary-Layer Interaction in Supersonic Flow Past a Finite-Span Sharp Wedge

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

Shock-wave/boundary-layer interactions (SWBLI) are of great importance in supersonic transport vehicles. The shock-induced separation and its unsteadiness may lead to harmful influences on the aerodynamic performance and fatigue life of supersonic air-intakes, turbo-machine cascades and supersonic nozzles. We particularly focus on a three-dimensional SWBLI in supersonic flow past a finite-span sharp wedge. Implicit large-eddy simulation is performed to investigate the flow features in the three-dimensional SWBLI. Results show that a bow-type side-edge shock wave is generated from the leading edge of the finite-span sharp wedge. The shock impinges on the turbulent boundary layer and causes additional turbulence fluctuations in the spanwise direction. Three-dimensional features dominate the shock impingement and reflection. A large-scale separation bubble is induced by the bow-type side-edge shock wave. Properties of this separation bubble are examined and qualitatively compared with a two-dimensional SWBLI case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dolling DS (2001) Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J 39(8):1517–1531

    Article  Google Scholar 

  2. Adamson TC, Messiter AF Jr (1980) Analysis of two-dimensional interactions between shock waves and boundary layers. Annu Rev Fluid Mech 12:103–138

    Article  MathSciNet  Google Scholar 

  3. Clemens NT, Narayanaswamy V (2009) Shock/turbulent boundary layer interactions: review of recent work on sources of unsteadiness. In: AIAA paper 2009-3710

  4. Andreopoulos Y, Agui JH, Briassulis G (2000) Shock wave-turbulence interactions. Annu Rev Fluid Mech 32:309–345

    Article  MathSciNet  Google Scholar 

  5. Clemens NT, Narayanaswamy V (2013) Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu Rev Fluid Mech 46(1):469–492

    Article  MathSciNet  Google Scholar 

  6. Pirozzoli S, Bernardini M (2011) Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J 49(6):1307–1312

    Article  Google Scholar 

  7. Ganapathisubramani B, Clemens NT, Dolling DS (2009) Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J Fluid Mech 636:397–425

    Article  Google Scholar 

  8. Piponniau S, Dussauge JP, Debiève JF, Dupont P (2009) A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech 629(6):87–108

    Article  Google Scholar 

  9. Touber E, Sandham ND (2011) Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J Fluid Mech 671(3):417–465

    Article  Google Scholar 

  10. Morgan B, Duraisamy K, Nguyen N, Kawai S, Lele SK (2013) Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J Fluid Mech 729:231–284

    Article  MathSciNet  Google Scholar 

  11. Lu FK, Li Q, Liu C (2012) Micro vortex generators in high-speed flow. J Progr Aerosp Sci 53:30–45

    Article  Google Scholar 

  12. Souverein LJ, Debiève JF (2010) Effect of air jet vortex generators on a shock wave boundary layer interaction. Exp Fluids 49(5):1053–1064

    Article  Google Scholar 

  13. Narayanaswamy V, Laxminarayan LR, Noel TC (2012) Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys Fluid 24(7):076101

    Article  Google Scholar 

  14. Fang J, Yao Y, Zheltovodov A, Lu L (2017) Investigation of three-dimensional shock wave/turbulent boundary-layer interaction initiated by a single fin. AIAA J 55(2):509–523

    Article  Google Scholar 

  15. Nonomura T, Fujii K (2009) Effects of difference scheme type in high-order weighted compact nonlinear schemes. J Comput Phys 228:3533–3539

    Article  Google Scholar 

  16. Nonomura T, Iizuka N, Fujii K (2010) Freestream and vortex preservation properties of high-order weno and wcns on curvilinear grids. Comput Fluids 39(2):197–214

    Article  MathSciNet  Google Scholar 

  17. Nonomura T, Li W, Goto Y, Fujii K (2011) Improvements of efficiency in seventh-order weighted compact nonlinear scheme. CFD J 18(2):180–186

    Google Scholar 

  18. Nishida H, Nonomura T (2009) ADI-SGS scheme on ideal magnetohydrodynamics. J Comput Phys 228:3182–3188

    Article  Google Scholar 

  19. Grinstein FF, Margolin LG, Rider WJ (2007) Implicit large eddy simulation: computing turbulent fluid dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid scale eddy viscosity model. Phys Fluids 3(7):1760–1765

    Article  Google Scholar 

  21. Li W, Nonomura T, Fujii K (2013) Mechanism of controlling supersonic cavity oscillations using upstream mass injections. Phys Fluids 25:086101–086115

    Article  Google Scholar 

  22. Li W, Nonomura T, Fujii K (2013) On the feedback mechanism in supersonic cavity flows. Phys Fluids 25:056101–056115

    Article  Google Scholar 

  23. Nonomura T, Fujii K (2011) Overexpansion effects on characteristics of mach waves from a supersonic cold jet. AIAA J 49:2282–2294

    Article  Google Scholar 

  24. Urbin G, Knight D (2001) Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J 39(7):1288–1295

    Article  Google Scholar 

  25. Comte P, Daude F, Mary I (2008) Simulation of the reduction of unsteadiness in a passively controlled transonic cavity flow. J Fluids Struct 24(8):1252–1261

    Article  Google Scholar 

  26. White F (1974) Viscous fluid flow, chap. 7. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of National Natural Science Foundation of China (11202131, 11772194), and the supply of the super computer π in SJTU. Funding was provided by National Basic Research Program of China (973 program) (2014CB744804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W. Three-Dimensional Shock-Wave/Boundary-Layer Interaction in Supersonic Flow Past a Finite-Span Sharp Wedge. Int. J. Aeronaut. Space Sci. 21, 329–336 (2020). https://doi.org/10.1007/s42405-019-00220-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-019-00220-2

Keywords

Navigation