Skip to main content
Log in

Utilize the UV-Visible Region for Reduction of NO by Methylene Blue-Doped TiO2 for Photocatalysis

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

A photocatalyst that can adsorb particulate matter (PM) with an electric charge is a popular method for PM reduction. Some commonly used photocatalysts comprise single metal oxides such as TiO2 and ZnO, which could be utilized under ultraviolet (UV) region. However, because UV region constitutes a very small part of the total wavelength of sunlight, technology needs to be developed that allows the utilization of the visible region as well. Herein, we developed a new organic material that activated under not only UV region but also visible region by utilizing methylene blue (MB) with TiO2. To make the TiO2–MB film adsorb well, we discuss various solvents, concentration controls, and even coating methods. By conducting NO removal test, we showed that it is possible to reduce the PM more effectively by using TiO2–MB film than that achieved using TiO2 alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency (USEPA), Air quality criteria for particulate matter. EPA 600/P-99/002bF, National Center (for Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, 2004)

    Google Scholar 

  2. H. Yue, C. He, Q. Huang, D. Yin, B.A. Bryan, Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nat. Commun. 11, 1–10 (2020)

    Article  Google Scholar 

  3. Y.L. Zhang, F. Cao, Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 5, 1–12 (2015)

    Google Scholar 

  4. S. Chowdhury, S. Dey, K.R. Smith, Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nat. Commun. 9, 1–10 (2018)

    Article  Google Scholar 

  5. C. Perrino, S. Tiwari, M. Catrambone, S. Dalla Torre, E. Rantica, S. Canepari, Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmos. Pollut Res. 2, 418–427 (2011)

    Article  CAS  Google Scholar 

  6. H.C. Kim, S. Kim, B.U. Kim, C.S. Jin, S. Hong, R. Park, S.W. Son, C. Bae, M.A. Bae, C.K. Song, A. Stein, Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep. 7, 1–7 (2017)

    Google Scholar 

  7. Y. Choi, H. Kim, J.T. Lee, Temporal variability of short term effects of PM10 on mortality in Seoul, Korea, Sci. Total Environ. 644, 122–128 (2018)

    Article  CAS  Google Scholar 

  8. F. Karagulian, C.A. Belis, C.F.C. Dora, A.M. Prüss-Ustün, S. Bonjour, H. Adair-Rohani, M. Amann, Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 120, 475–483 (2015)

    Article  CAS  Google Scholar 

  9. P.K. Hopke, K. Ito, T. Mar, W.F. Christensen, D.J. Eatough, R.C. Henry, E. Kim, F. Laden, R. Lall, T.V. Larson, L. Neas, P.K. Hopke, G.D. Thurston, PM source apportionment and health effects: 1. Intercomparison of source apportionment results. J. Expo Sci. Environ. Epidemiol. 16, 275–286 (2006)

    Article  CAS  Google Scholar 

  10. S. Rodrıguez, X. Querol, A. Alastuey, M.M. Viana, M. Alarcon, E. Mantilla, C.R. Ruiz, Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain, Sci. Total Environ. 328, 95–113 (2004)

    Article  Google Scholar 

  11. World Health Organization (WHO), Air quality guidelines: Global update 2005 (2006)

  12. J. Lasek, Y.H. Yu, J.C. Wu, Removal of NOx by photocatalytic processes. J. Photochem. Photobiol C 14, 29–52 (2013)

    Article  CAS  Google Scholar 

  13. T. Maggos, J.G. Bartzis, P. Leva, D. Kotzias, Application of photocatalytic technology for NOx removal. Appl. Phys. A 89, 81–84 (2007)

    Article  CAS  Google Scholar 

  14. J.M. Cordero, R. Hingorani, E. Jiménez-Relinque, M. Grande, R. Borge, A. Narros, M. Castellote, NOx removal efficiency of urban photocatalytic pavements at pilot scale. Sci. Total Environ. 719, 137459 (2020)

    Article  CAS  Google Scholar 

  15. V. Khanal, N.O. Balayeva, C. Günnemann, Z. Mamiyev, R. Dillert, D.W. Bahnemann, V.R. Subramanian, Photocatalytic NOx removal using tantalum oxide nanoparticles: A benign pathway. Appl. Catal. B 291, 119974 (2021)

    Article  CAS  Google Scholar 

  16. D. Seo, T.S. Yun, NOx removal rate of photocatalytic cementitious materials with TiO2 in wet condition. Build. Environ. 112, 233–240 (2017)

    Article  Google Scholar 

  17. V.H. Nguyen, B.S. Nguyen, C.W. Huang, T.T. Le, C.C. Nguyen, T.T.N. Le, D. Heo, Q.V. Ly, Q.T. Trinh, M. Shokouhimehr, C. Xia, S.S. Lam, D.V.N. Vo, S.Y. Kim, Q.V. Le, Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts. J. Clean. Prod. 270, 121912 (2020)

    Article  CAS  Google Scholar 

  18. Th Maggos, J.G. Bartzis, M. Liakou, C. Gobin, Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J. Hazard. Mater. 146, 668–673 (2007)

    Article  CAS  Google Scholar 

  19. C.H. Ao, S.C. Lee, C.L. Mak, L.Y. Chan, Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: Promotion versus inhibition effect of NO. Appl. Catal. B 42, 119–129 (2003)

    Article  CAS  Google Scholar 

  20. M.T. Noman, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut Res. 26, 3262–3291 (2019)

    Article  CAS  Google Scholar 

  21. T. Ochiai, A. Fujishima, Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol C 13, 247–262 (2012)

    Article  CAS  Google Scholar 

  22. N. Todorova, T. Giannakopoulou, K. Pomoni, J. Yu, T. Vaimakis, C. Trapalis, Photocatalytic NOx oxidation over modified ZnO/TiO2 thin films. Catal. Today 252, 41–46 (2015)

    Article  CAS  Google Scholar 

  23. B.O. Bica, J.V.S. de Melo, Concrete blocks nano-modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with titanium dioxide (TiO2). Constr. Build. Mater. 252, 119120 (2020)

    Article  CAS  Google Scholar 

  24. A.M. Soylu, M. Polat, D.A. Erdogan, Z. Say, C. Yıldırım, Ö Birer, E. Ozensoy, TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Appl. Surf. 318, 142–149 (2014)

    Article  CAS  Google Scholar 

  25. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012)

    Article  CAS  Google Scholar 

  26. S. Komatsuda, Y. Asakura, J.J.M. Vequizo, A. Yamakata, S. Yin, Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N, C)-TiO2 by charge transfer between F-TiO2 and (N, C)-TiO2 through their doping levels. Appl. Catal. B 238, 358–364 (2018)

    Article  CAS  Google Scholar 

  27. M. Perez-Nicolas, I. Navarro-Blasco, J.M. Fernández, J.I. Alvarez, Atmospheric NOx removal: Study of cement mortars with iron-and vanadium-doped TiO2 as visible light-sensitive photocatalysts. Constr. Build. Mater. 149, 257–271 (2017)

    Article  CAS  Google Scholar 

  28. C. Yu, D. Cai, K. Yang, C.Y. Jimmy, Y. Zhou, C. Fan, Sol–gel derived S, I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. J. Phys. Chem. Solids 71, 1337–1343 (2010)

    Article  CAS  Google Scholar 

  29. I.A. Perales-Martínez, V. Rodríguez-González, S.W. Lee, S. Obregón, Facile synthesis of InVO4/TiO2 heterojunction photocatalysts with enhanced photocatalytic properties under UV–vis irradiation. J. Photochem. Photobiol A 299, 152–158 (2015)

    Article  Google Scholar 

  30. International Organization for Standardization (ISO), Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics) –Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials - Part 1: Removal of Nitric Oxide, ISO 22197-1: second ed., (2016)

  31. I. Rhee, J.S. Lee, J.B. Kim, J.H. Kim, Nitrogen oxides mitigation efficiency of cementitious materials incorporated with TiO2. Materials 11, 877 (2018)

    Article  Google Scholar 

  32. I. Rhee, J.H. Kim, J.H. Kim, Y.S. Roh, Sensitivity of NOx removal on recycled TiO2 in cement mortar. J. Rec Const. Resources 4, 388–395 (2016)

    Google Scholar 

  33. G. Lakhotia, G. Umarji, S. Jagtap, S. Rane, U. Mulik, D. Amalnerkar, S.W. Gosavi, An investigation on TiO2–ZnO based thick film ‘solar blind’, photo-conductor for ‘green’ electronics. Mater. Sci. Eng. B 168, 66–70 (2010)

    Article  CAS  Google Scholar 

  34. G. Liu, H. Xia, Y. Niu, X. Zhao, G. Zhang, L. Song, H. Chen, Photocatalytic performance of doped TiO2/AC coating and its UV stability research. Prog Org. Coat. 148, 105882 (2020)

    Article  CAS  Google Scholar 

  35. O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko, M.S. Smirnov, V.Y. Khokhlov, O.V. Erina, Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib. Spectrosc. 86, 181–189 (2016)

    Article  CAS  Google Scholar 

  36. Raman-spectroscopic analyses of road construction materials, Raman Spectroscopy Application Note RS–4

  37. J. Jehlička, P. Vítek, H.G.M. Edwards, Raman spectra of organic acids obtained using a portable instrument at – 5°C in a mountain area at 2000 m above sea level. J. Raman Spectrosc. 41, 440–444 (2010)

    Google Scholar 

  38. Z. Hu, T. Xu, B. Fang, Photocatalytic degradation of vehicle exhaust using Fe-doped TiO2 loaded on activated carbon. Appl. Surf. Sci. 420, 34–42 (2017)

    Article  CAS  Google Scholar 

  39. I. Alfieri, A. Lorenzi, L. Ranzenigo, L. Lazzarini, G. Predieri, P.P. Lottici, Synthesis and characterization of photocatalytic hydrophobic hybrid TiO2-SiO2 coatings for building applications. Build. Environ. 111, 72–79 (2017)

    Article  Google Scholar 

  40. G. Liu, H. Xia, Y. Niu, X. Zhao, G. Zhang, L. Song, H. Chen, Photocatalytic performance of doped TiO2/AC coating and its UV stability research. Prog. Org. Coat. 148,105882  (2020).

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A1A01070503), and (NRF-2020R1A6A1A03038697, and NRF-2022M3J7A1062940).

Author information

Authors and Affiliations

Authors

Contributions

Gyeong-Ah Kim and Donghwan Yun have contributed equally to this work. Min-Ju Park and Minsik Gong evaluated the performance and analyzed characteristics of photocatalyst.

Corresponding authors

Correspondence to Kyung-Hun Park, Dae-Woon Jeong or Gi-Hwan Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, GA., Yun, D., Park, MJ. et al. Utilize the UV-Visible Region for Reduction of NO by Methylene Blue-Doped TiO2 for Photocatalysis. Trans. Electr. Electron. Mater. 23, 588–594 (2022). https://doi.org/10.1007/s42341-022-00417-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00417-5

Keywords

Navigation