Skip to main content
Log in

Synthesis, characterization and USW sensor of PEO/PMMA/PVP doped with zirconium dioxide nanoparticles

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The piezoelectric phenomena uses in various helpful applications, such as printing of piezoelectric inkjet, the detection of sound and the production of high voltage electricity in different electronic devices. In present research, polyethylene oxide (PEO), poly(methyl methacrylate) (PMMA) and poly(N-vinyl pyrrolidone) (PVP) were separately dissolved in deionized water. These polymers were mixed with ratio of 0.6:0.2:0.2 wt%, respectively before loaded with 0.0, 0.02, 0.04 and 0.06 wt% of zirconium dioxide nanoparticles (ZrO2NPs) via casting method to prepare nanocomposite (NCs) films. The optical microscope (OM) showed good diffused of the NPs into matrix with homogenous distribution. The functional groups of k1 specimen were diagnosed via Fourier transformation infrared (FTIR). The ultrasonic wave (USW) properties were studied for k1 specimen with various frequencies (25, 30, 35, 40 and 45) kHz. The USW coefficients were clearly affected by the frequency varied. The USW coefficients decreased with increasing the frequency except the compressibility. The dielectric constant of the k1 sample was notable improved up to 85% with increasing of applied load. The k1 specimen was succeeded to be used as USW sensor. New NCs film presented as promising material for wide electrical and mechanical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

Ethics declarations.

References

  1. J.E. Mark (1999) Polymer Data Handbook. New York: Oxford university.2nd .ed. ISBN: 9780195181012

  2. Bailey and Koleske (1976) Poly(Ehtylene Oxide). Academic Press. ISBN:0120732505

  3. A. Jenkins (2013) Polymer Science: A material Science Handbook. North Holland Publishing. Kindle ed. ASIN: B01DY7XF70

  4. B. Kutscher (2020) Dermatologicals (D), 4. Antiseptics and Disinfectants (D08), Anti-Acne Preparations (D10), and Other Dermatological Preparations (D11). Ullmann’s Encyclopedia of Industrial Chemistry. 1–22

  5. J. Fathima, A. Pugazhendhi, R. Venis (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb. Pathogenesis 110, 245–251.

    Article  CAS  Google Scholar 

  6. A. Karar (2022) Structural, Morphological, and Gamma Ray Shielding (GRS) Characterization of HVCMC/PVP/PEG Polymer Blend Encapsulated with Silicon Dioxide Nanoparticles. Silicon. 14, 6–10. https://doi.org/10.1007/s12633-022-01678-8

    Article  CAS  Google Scholar 

  7. J. Jeevanandam, A. Barhoum, Y. Chan, A. Dufresne, M. Danquah (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol 9, 1050–1074

    Article  CAS  Google Scholar 

  8. I. Agool, K. Jawad, A. Hashim (2017) Fabrication of new nanocomposites: (PMMA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. IJPT J. 21, 397–403

    CAS  Google Scholar 

  9. S. Kulkarni, U. Khadke (2016) Effect of Solvents on the Ultrasonic Velocity and Acoustic Parameters of Polyvinylidene Fluoride Solutions. Indian Journal of Materials Science. 2016: 1–6

  10. B. Dipak (2000) Dictionary of pure and applied physics. Taylor& Francis. ISBN: 9780849328909

  11. J. Karar Abdali, Abdulkareem, A. Majeed (2015) Enhancement of Some Mechanical Properties of Polyethylene Glycol by Adding Carboxymethyl Cellulose as a Blends and Applied in Wood Glue. World Sci. News J. 21, 12–23

    Google Scholar 

  12. R. Li, A. Kolesnikov, M. Kiba (2017) Parameters of ultrasonic dispersion of polymer-composite solutions. Polym. Sci. Ser. D J. 10(2), 185–188

    Article  CAS  Google Scholar 

  13. A. Upmanyu, D. Singh (2014) Ultrasonic Studies of Molecular Interactions in Polymer Solution of the Polyisobutylene (PIB) and Benzene. Acta Acustica united with Acustica 100(3), 434–439

    Article  Google Scholar 

  14. J. Ali, S. Ali, K. Abdali, R. Shirren, O. Abdulazeez (2017) Synthesis of hyperbranched polymers and study of its optical properties. J. Eng. Appl. Sci. 12(6), 7800–7804

    Google Scholar 

  15. K. Hassina, P. Frederic, D. Jean, D. Hakim (2009) Measurements under High Pressure of Ultrasonic Wave Velocity in Glycerol. IEEE: International Ultrasonic Symposium Proceedings. 8: 1567–1570

  16. D. Rao, A. Krishnaiah, P. Naidu, Excess thermodynamic properties of liquid ethylenediamine + anaromatichydrocarbon. Acta Chim. Academiae Scientiarum Hung. 107(1), 49–55 (1981)

    CAS  Google Scholar 

  17. S. Ravichandran, K. Ramanathan, U/S Investigations of MnSO4, NiSO4, and CuSO4 in PMMA Solution at 303 K. Rasayan J. 3(2), 375–384 (2010)

    CAS  Google Scholar 

  18. P. Nikam, M. Hasan, Ultrasonic velocity and apparent molar compressibility of trichloroacetic acid in aqueous ethanol. Asian J. Chem. 5(2), 319–321 (1993)

    CAS  Google Scholar 

  19. W. Zong, L. Dong (2011) Method of improved scattered size estimation without Attenuation known a priori. Bioinformatics and Biomedical Engineering (ICBBE), 4th International Conference, IEEE. 8(10), 1–4

  20.  Karar Abdali, Shireen R., Ali J (2019) Mechanical Ultrasonic Properties of (Polymethylene Oxide-TiO2) Polymer Composite Gel. J. Eng. Appl. Sci. 14(3), 6002–6005.

    Article  Google Scholar 

  21. A. Karar (2017) Acoustical Properties of (Chitin/nano-TiO2) Bio‎ Polymer Composite Gel. J. Univ. Babylon Pure Appl. Sci. 25(5), 1762–1766

    Google Scholar 

  22. Karar Abdali (2015) Enhancement of some physical properties of polyethylene glycol by adding some polymeric cellulose derivatives and its applications. Ph.D. thesis, College of Science, Babylon University, Iraq

  23. A. Al-Khalaf, K. Abdali, A. Obaid, M. Zghair (2019) Preparation and structural properties of liquid crystalline materials and its transition metals complexes. Asian J. Chem. 31(2), 393–395

    Article  CAS  Google Scholar 

  24. T. Kim (2015) Characterization and applications of piezoelectric Polymers. Electrical Engineering and Computer Sciences. University of California at Berkeley. M.Sc. thesis

  25. M. Qayssar, H. Ahmed, A. Majeed (2019) Structural, A.C electrical and Optical properties of (Polyvinyl alcohol–Polyethylene Oxide–Aluminum Oxide) Nanocomposites for Piezoelectric Devices. Egypt. J. Chem. 62, 719–734

    Google Scholar 

  26. A. Hashim, A. Hadi (2018) Novel Pressure Sensors Made From Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization. Ukrainian J. Phys. 63(8), 754

    Article  Google Scholar 

  27. N. Bouhameda, S. Souissia, P. Marechalb, M. Amara, O. Lenoirb, R. Legerc, A. Bergeret  (2020) Ultrasound evaluation of the mechanical properties as an investigation tool for the wood-polymer composites including olive wood flour. Mech. Mater. 148, 103445 

    Article  Google Scholar 

  28. J. Merotte, L. Duigou, A. Bourmaud, K. Behlouli, C. Baley (2016) Mechanical and acoustic behavior of porosity controlled randomly dispersed flax/PP, biocomposite Polymer. Test. 51, 174–180

    CAS  Google Scholar 

  29. M. Kariminejad, D. Tormey, S. Huq, J. Morrison, M. McAfee (2021) Ultrasound Sensors for Process Monitoring in Injection Moulding. Sensors. 21(15), 5193

    Article  CAS  Google Scholar 

  30. A. Maiorano, G. Napolitano, D. Annunziata, E. Rocca (2021) Experimental measurements through ultrasounds for viscoelasticity analysis. IOP Conference Series: Materials Science and Engineering. 1048(1), 012005

  31. A. Khan (2021) Effect of Ultrasonic Vibration on Structural and Physical Properties of Resin-Based Dental Composites. Polymers. 13(13), 2054

  32. M. Abutalib, A. Rajeh (2021) Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym. Test. 93, 107013.

    Article  CAS  Google Scholar 

  33. S. Abdullah, M. Abdul kadhim, E. Al-Bermany (2021) Graphene-Reinforced the Structure and Mechanical Properties of New PMMA-PVA Hybrid Nanocomposites. IOP Conf. Series: Materials Science and Engineering. 1094, 1–15

Download references

Acknowledgements

Author would like to thank Prof Ehssan Al-Bermany and Dr. Hikmat Banimuslem for editing.

Funding

No funding.

Close access.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Karar Abdali.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdali, K. Synthesis, characterization and USW sensor of PEO/PMMA/PVP doped with zirconium dioxide nanoparticles. Trans. Electr. Electron. Mater. 23, 563–568 (2022). https://doi.org/10.1007/s42341-022-00388-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00388-7

Keywords

Navigation