Skip to main content
Log in

Design, Simulation and Analysis of a Slotted RF MEMS Switch

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a capacitive RF MEMS switch working in shunt configuration is designed and optimized using FEM software. An electrostatically actuated fixed–fixed type shunt switch is optimised for low pull-in voltage. The thickness of the membrane and the actuating gap is optimized for low pull-in voltage and high capacitance ratio. The effect of different meanders, perforations, slits and device dimensions were also analyzed. The final device has a pull-in voltage of 3.74 V, down capacitance of 28.6 pF, up capacitance of 160 fF and a capacitance ratio of 178.125. The switch shows peak isolation of 43.3 dB at 39.7 GHz and isolation better than 30 dB over the entire Ka band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J. Iannacci, A. Faes, F. Mastri, D. Masotti, V. Rizzoli, A MEMS-based wide-band multi-state power attenuator for radio frequency and microwave applications. In TechConnect World 2010, vol 2 (2010), pp. 328–331

  2. J. Iannacci, M. Huhn, C. Tschoban, H. Pötter, RF-MEMS technology for future mobile and high-frequency applications: reconfigurable 8-bit power attenuator tested up to 110 GHz. IEEE

  3. J. Iannacci, D. Masotti, T. Kuenzig, M. Niessner, A reconfigurable impedance matching network entirely manufactured in RF-MEMS technology, In Smart Sensors, Actuators, and MEMS V, vol 8066. International Society for Optics and Photonics (2011), p. 80660X

  4. T. Nishino, Y. Kitsukawa, M. Hangai, S.-s. Lee, S.-n. Soda, M. Miyazaki, I. Naitoh, Y. Konishi, Tunable MEMS hybrid coupler and L-band tunable filter, in 2009 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 1045–1048

  5. G. De Angelis, A. Lucibello, R. Marcelli, S. Catoni, A. Lanciano, R. Buttiglione, M. Dispenza et al, Packaged single pole double thru (SPDT) and true time delay lines (TTDL) based on RF MEMS switches, in 2008 International Semiconductor Conference, vol 1 (IEEE, 2008), pp. 227–230

  6. P. Kumar, K. Ashok, S. Rao, K. GirijaSravani, Design and simulation of millimeter wave reconfigurable antenna using iterative meandered RF MEMS switch for 5G mobile communications. Microsyst. Technol. 26, 1–11 (2019)

    Google Scholar 

  7. K. Sravani, D. Girija, Prathyusha, G.R.K. Prasad, C.G. Chand, P.A. Kumar, K. Guha, K. Srinivasa Rao, Design of reconfigurable antenna by capacitive type RF MEMS switch for 5G applications. Microsyst. Technol. 1–9 (2020)

  8. S. Shekhar, K.J. Vinoy, G.K. Ananthasuresh, Low-voltage high-reliability MEMS switch for millimeter wave 5G applications. J. Micromech. Microeng. 28(7), 075012 (2018). Electr. Dev. Lett. 37(12), 1646–1649 (2016)

  9. Y. Mafinejad, H.R. Ansari, S. Khosroabadi, Development and optimization of RF MEMS switch. Microsyst. Technol. 26(4), 1253–1263 (2020)

    Article  CAS  Google Scholar 

  10. H.-N. Lee, S.-G. Jang, S. Lee, J.-S. Lee, Y.-S. Hwang, MEMS inertial switch for military applications. Multidiscip. Dig. Publ. Inst. Proc. 1(4), 343 (2017)

    Google Scholar 

  11. M. Dorfmeister, B. Kössl, M. Schneider, U. Schmid, A novel Bi-stable MEMS membrane concept based on a piezoelectric thin film actuator for integrated switching. Multidiscip. Dig. Publ. Inst. Proc. 2(13), 912 (2019)

    Google Scholar 

  12. P. Zolfaghari, V. Arzhang, M. Zolfaghari, A low loss and power efficient micro-electro-thermally actuated RF MEMS switch for low power and low loss applications. Microsyst. Technol. 24(7), 3019–3032 (2018)

    Article  Google Scholar 

  13. Y.-S. Kim, N.G. Dagalakis, S.K. Gupta, Creating large out-of-plane displacement electrothermal motion stage by incorporating beams with step features. J. Micromech. Microeng. 23(5), 055008 (2013)

    Article  Google Scholar 

  14. X. Miao, X. Dai, P. Wang, G. Ding, X. Zhao, Design, fabrication and characterization of a bistable electromagnetic microrelay with large displacement. Microelectron. J. 42(8), 992–998 (2011)

    Article  CAS  Google Scholar 

  15. M. Barbato, G. Meneghesso, A novel technique to alleviate the stiction phenomenon in radio frequency microelectromechanical switches. IEEE Electr. Dev. Lett. 36(2), 177–179 (2014)

    Article  Google Scholar 

  16. C. Bordas, K. Grenier, D. Dubuc, E. Flahaut, S. Pacchini, M. Paillard, J.-L. Cazaux, Carbon nanotube based dielectric for enhanced RF MEMS reliability, in 2007 IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 375–378

  17. J. DeNatale, R. Mihailovich, Rf mems reliability, in TRANSDUCERS'03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664), vol 2 (IEEE, 2003), pp. 943–946

  18. J. Pal, Y. Zhu, J. Lu, F. Khan, D. Dao, A novel three-state contactless RF micromachined switch for wireless applications. IEEE Electr. Dev. Lett. 36(12), 1363–1365 (2015)

    Article  Google Scholar 

  19. K. Rangra, B. Margesin, L. Lorenzelli, F. Giacomozzi, C. Collini, M. Zen, G. Soncini, L. Del Tin, R. Gaddi, Symmetric toggle switch—a new type of rf MEMS switch for telecommunication applications: design and fabrication. Sens. Actuat. A Phys. 123, 505–514 (2005)

    Article  Google Scholar 

  20. Y.-Q. Zhu, L. Han, L.-F. Wang, J.-Y. Tang, Q.-A. Huang, A novel three-state RF MEMS switch for ultrabroadband (DC-40 GHz) applications. IEEE Electr. Dev. Lett. 34(8), 1062–1064 (2013)

    Article  Google Scholar 

  21. K. Sravani, G. Koushik Guha, K. Srinivasa Rao, Design of a novel step structure RF MEMS switch for K-band applications. Microsyst. Technol. 27(2), 619–627 (2021)

    Article  Google Scholar 

  22. J. Park, E.S. Shim, W. Choi, Y. Kim, Y. Kwon, D.-I. Cho, A non-contact-type RF MEMS switch for 24-GHz radar applications. J. Microelectromech. Syst. 18(1), 163–173 (2009)

    Article  CAS  Google Scholar 

  23. K. Rao, P. Srinivasa, A. Kumar, K. Guha, B.V.S. Sailaja, K.V. Vineetha, K.L. Baishnab, and K. GirijaSravani, Design and simulation of fixed–fixed flexure type RF MEMS switch for reconfigurable antenna. Microsyst. Technol. 1–8 (2018)

  24. K.G. Sravani, Optimization and analysis of bridge type RF MEMS switch for X-band. Microsyst. Technol. 1–7 (2021)

  25. K.G. Sravani, K. Srinivasa Rao, D. Prathyusha, B.V. Sai Kiran, B. Siva Kumar, R. Prem Kumar, K. SanthiTarun, Design and performance analysis of double cantilever type capacitive shunt RF MEMS switch. Microsyst. Technol. 26(2), 345–352 (2020)

    Article  Google Scholar 

  26. K. Rao, P. Srinivasa, T.V. Naveena, A. Swamy, P. Ashok Kumar, K. Guha, K. GirijaSravani, Design and performance analysis of self-similar reconfigurable antenna by cantilever type RF MEMS switch. Microsyst. Technol. 1–12 (2019).

  27. L.-Y. Ma, N. Soin, M.H.M. Daut, S.F.W. Muhamad Hatta, Comprehensive study on RF-MEMS switches used for 5G scenario. IEEE Access 7, 107506–107522 (2019)

    Article  Google Scholar 

  28. G.M. Rebeiz, RF MEMS: Theory, Design, and Technology (Wiley, London, 2004)

    Google Scholar 

  29. Y. Mafinejad, A. Kouzani, K. Mafinezhad, I. Mashad, Review of low actuation voltage RF MEMS electrostatic switches based on metallic and carbon alloys. J. Microelectron. Electron. Compon. Mater. 43(2), 85–96 (2013)

    Google Scholar 

  30. K.S. Rao, C. Gopi Chand, K. GirijaSravani, D. Prathyusha, P. Naveena, G. Sai Lakshmi, P. Ashok Kumar, T. Lakshmi Narayana, Design, modeling and analysis of perforated RF MEMS capacitive shunt switch. IEEE Access 7, 74869–74878 (2019)

    Article  Google Scholar 

  31. K.S. Rao, L.N. Thalluri, K. Guha, K. GirijaSravani, Fabrication and characterization of capacitive RF MEMS perforated switch. IEEE Access 6, 77519–77528 (2018)

    Article  Google Scholar 

  32. R. Saha, S. Maity, N.M. Devi, C.T. Bhunia, Analysis of pull-in-voltage and figure-of-merit of capacitive MEMS switch. Trans. Electr. Electron. Mater. 17(3), 129–133 (2016)

    Article  Google Scholar 

  33. C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, M. Eberly, Lifetime characterization of capacitive RF MEMS switches, in 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157) vol 1 (IEEE, 2001), pp. 227–230

  34. K.G. Sravani, K. Guha, K. Srinivasa Rao, An investigation on capacitance modeling of step structure RF MEMS perforated shunt switch, in 2018 IEEE Electron Devices Kolkata Conference (EDKCON) (IEEE, 2018), pp. 302–311

  35. K.G. Sravani, K. Guha, K. Srinivasa Rao, Analysis on selection of beam material for novel step structured RF-MEMS switch used for satellite communication applications. Trans. Electr. Electron. Mater. 19(6), 467–474 (2018)

    Article  Google Scholar 

  36. K.G. Sravani, T. Lakshmi Narayana, K. Guha, K. Srinivasa Rao, Role of dielectric layer and beam membrane in improving the performance of capacitive RF MEMS switches for Ka-band applications. Microsyst. Technol. 27, 1–10 (2018)

    Google Scholar 

  37. K. Topalli et al., Empirical formulation of bridge inductance in inductively tuned RF MEMS shunt switches. Progr. Electromag. Res. 97, 343–356 (2009)

    Article  Google Scholar 

  38. K.G. Sravani, K. Srinivasa Rao, Analysis of RF MEMS shunt capacitive switch with uniform and non-uniform meanders. Microsyst. Technol. 24(2), 1309–1315 (2018)

    Article  Google Scholar 

  39. K.G. Sravani, D.K. Naga Mallika, G. Meghana, U. Naga Bhavani Divya, C. Gopi Chand, K. Vasantha, K. Srinivasa Rao, Design and simulation of RF MEMS shunt capacitive switch with non-uniform meanders for C-band applications. Microsyst. Technol. 26, 1–6 (2020)

    Article  Google Scholar 

  40. K.G. Sravani, K. Guha, K. Srinivasa Rao, Analysis of a novel RF MEMS switch using different meander techniques. Microsyst. Technol. 26(5), 1625–1635 (2020)

    Article  CAS  Google Scholar 

  41. K.G. Sravani, D. Prathyusha, K. Srinivasa Rao, P. Ashok Kumar, G. Sai Lakshmi, C. Gopi Chand, P. Naveena, L. Narayana Thalluri, K. Guha, Design and performance analysis of low pull-in voltage of dimple type capacitive RF MEMS shunt switch for Ka-band. IEEE Access 7, 44471–44488 (2019)

    Article  Google Scholar 

  42. C.H. Wong, M.J. Tan, K.M. Liew, Electrical characterisation of RF capacitive microswitch. Sens. Actuat. A Phys. 102(3), 296–310 (2003)

    Article  CAS  Google Scholar 

  43. J.B. Muldavin, G.M. Rebeiz, High-isolation CPW MEMS shunt switches. 1. Modeling. IEEE Trans. Microw. Theory Tech 48(6), 1045–1052 (2000)

    Article  Google Scholar 

  44. A.K. Sharma, N. Gupta, Electromagnetic modeling and parameter extraction of RF-MEMS switch. Microsyst. Technol. 21(1), 181–185 (2015)

    Article  CAS  Google Scholar 

  45. S. Shekhar, K.J. Vinoy, G.K. Ananthasuresh, Surface-micromachined capacitive RF switches with low actuation voltage and steady contact. J. Microelectromech. Syst. 26(3), 643–652 (2017)

    Article  CAS  Google Scholar 

  46. D. Balaraman et al., Low-cost low actuation voltage copper RF MEMS switches, in 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278) vol. 2 (IEEE, 2002)

  47. T.M. Vu et al., Design and fabrication of RF-MEMS switch for V-band reconfigurable application. Progr. Electromag. Res. 39, 301–318 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank, National MEMS design center, NIT Silchar for providing necessary FEM tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Girija Sravani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chokkara, S.P., Gaur, A., Sravani, K.G. et al. Design, Simulation and Analysis of a Slotted RF MEMS Switch. Trans. Electr. Electron. Mater. 23, 419–429 (2022). https://doi.org/10.1007/s42341-021-00363-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00363-8

Keywords

Navigation