Skip to main content
Log in

A Hamiltonian Structure of the Isobe–Kakinuma Model for Water Waves

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

We consider the Isobe–Kakinuma model for water waves, which is obtained as the system of Euler–Lagrange equations for a Lagrangian approximating Luke’s Lagrangian for water waves. We show that the Isobe–Kakinuma model also enjoys a Hamiltonian structure analogous to the one exhibited by V. E. Zakharov on the full water wave problem and, moreover, that the Hamiltonian of the Isobe–Kakinuma model is a higher order shallow water approximation to the one of the full water wave problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  2. Craig, W.: On the Hamiltonian for water waves. RIMS Kôkyûroku No. 2038, 98–114 (2017)

    Google Scholar 

  3. Craig, W., Groves, M.D.: Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19, 367–389 (1994)

    Article  MathSciNet  Google Scholar 

  4. Craig, W., Groves, M.D.: Normal forms for wave motion in fluid interfaces. Wave Motion 31, 21–41 (2000)

    Article  MathSciNet  Google Scholar 

  5. Craig, W., Guyenne, P., Kalisch, H.: Hamiltonian long-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 58, 1587–1641 (2005)

    Article  MathSciNet  Google Scholar 

  6. Craig, W., Guyenne, P., Nicholls, D.P., Sulem, C.: Hamiltonian long-wave expansions for water waves over a rough bottom. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 839–873 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Craig, W., Guyenne, P., Sulem, C.: A Hamiltonian approach to nonlinear modulation of surface water waves. Wave Motion 47, 552–563 (2010)

    Article  MathSciNet  Google Scholar 

  8. Craig, W., Guyenne, P., Sulem, C.: Hamiltonian higher-order nonlinear Schrödinger equations for broader-banded waves on deep water. Eur. J. Mech. B Fluids 32, 22–31 (2012)

    Article  MathSciNet  Google Scholar 

  9. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)

    Article  MathSciNet  Google Scholar 

  10. Iguchi, T.: A shallow water approximation for water waves. J. Math. Kyoto Univ. 49, 13–55 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Iguchi, T.: Isobe-Kakinuma model for water waves as a higher order shallow water approximation. J. Differ. Equ. 265, 935–962 (2018)

    Article  MathSciNet  Google Scholar 

  12. Iguchi, T.: A mathematical justification of the Isobe-Kakinuma model for water waves with and without bottom topography. J. Math. Fluid Mech. 20, 1985–2018 (2018)

    Article  MathSciNet  Google Scholar 

  13. Isobe, M.: A proposal on a nonlinear gentle slope wave equation. Proc. Coast. Eng. Jpn. Soc. Civ. Eng. 41, 1–5 (1994). [Japanese]

    Google Scholar 

  14. Isobe, M.: Time-dependent mild-slope equations for random waves. In: Proceedings of 24th International Conference on Coastal Engineering, ASCE, pp. 285–299 (1994)

  15. Kakinuma, T.: [title in Japanese]. In: Proceedings of Coastal Engineering, Japan Society of Civil Engineers, vol. 47, pp. 1–5 (2000) (Japanese)

  16. Kakinuma, T.: A Set of Fully Nonlinear Equations for Surface and Internal Gravity Waves. Coastal Engineering V: Computer Modelling of Seas and Coastal Regions, pp. 225–234. WIT Press, Southampton (2001)

    Google Scholar 

  17. Kakinuma, T.: A Nonlinear Numerical Model for Surface and Internal Waves Shoaling on a Permeable Beach. Coastal Engineering VI: Computer Modelling and Experimental Measurements of Seas and Coastal Regions, pp. 227–236. WIT Press, Southampton (2003)

    Google Scholar 

  18. Lannes, D.: The water waves problem. Mathematical analysis and asymptotics. In: Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)

  19. Luke, J.C.: A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395–397 (1967)

    Article  MathSciNet  Google Scholar 

  20. Mei, C.C., Le Méhauté, B.: Note on the equations of long waves over an uneven bottom. J. Geophys. Res. 71, 393–400 (1966)

    Article  MathSciNet  Google Scholar 

  21. Miles, J.W.: On Hamilton’s principle for surface waves. J. Fluid Mech. 83, 153–158 (1977)

    Article  MathSciNet  Google Scholar 

  22. Murakami, Y., Iguchi, T.: Solvability of the initial value problem to a model system for water waves. Kodai Math. J. 38, 470–491 (2015)

    Article  MathSciNet  Google Scholar 

  23. Nemoto, R., Iguchi, T.: Solvability of the initial value problem to the Isobe–Kakinuma model for water waves. J. Math. Fluid Mech. 20, 631–653 (2018)

    Article  MathSciNet  Google Scholar 

  24. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Iguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to the late Professor Walter L. Craig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. I. was partially supported by JSPS KAKENHI Grant Number JP17K18742 and JP17H02856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchêne, V., Iguchi, T. A Hamiltonian Structure of the Isobe–Kakinuma Model for Water Waves. Water Waves 3, 193–211 (2021). https://doi.org/10.1007/s42286-020-00025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-020-00025-x

Keywords

Mathematics Subject Classification

Navigation