Skip to main content
Log in

Rigorous Asymptotic Models of Water Waves

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

We develop a rigorous asymptotic derivation of two mathematical models of water waves that capture the full nonlinearity of the Euler equations up to quadratic and cubic interactions, respectively. Specifically, letting \( \epsilon \) denote an asymptotic parameter denoting the steepness of the water wave, we use a Stokes expansion in \( \epsilon \) to derive a set of linear recursion relations for the tangential component of velocity, the stream function, and the water wave parameterization. The solution of the water wave system is obtained as an infinite sum of solutions to linear problems at each \(O( \epsilon ^k)\) level, and truncation of this series leads to our two asymptotic models, which we call the quadratic and cubic h-models. These models are well posed in spaces of analytic functions. We prove error bounds for the difference between solutions of the h-models and the water wave system. We also show that the Craig–Sulem models of water waves can be obtained from our asymptotic procedure. We then develop a novel numerical algorithm to solve the quadratic and cubic h-models as well as the full water wave system. For three very different examples, we show that the agreement between the model equations and the water wave solution is excellent, even when the wave steepness is quite large. We also present a numerical example of corner formation for water waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Airy, G.B.: Tides and waves. In: Rose, H.J. et al (eds.) Encyclopedia Metropolitana (1817–1845), London (1841)

  2. Akers, B., Milewski, P.A.: Dynamics of three-dimensional gravity-capillary solitary waves in deep water. SIAM J. Appl. Math. 70(7), 2390–2408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akers, B., Nicholls, D.P.: Traveling waves in deep water with gravity and surface tension. SIAM J. Appl. Math. 70(7), 2373–2389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akers, B., Nicholls, D.P.: Spectral stability of deep two-dimensional gravity water waves: repeated eigenvalues. SIAM J. Appl. Math. 72(2), 689–711 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akers, B., Nicholls, D.P.: The spectrum of finite depth water waves. Eur. J. Mech. B Fluids 46, 181–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alazard, T., Burq, N., Zuily, C.: On the cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. (4) 48(5), 1149–1238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171(3), 485–541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ambrose, D.M., Bona, J.L., Nicholls, D.P.: On ill-posedness of truncated series models for water waves. Proc. R. Soc. A 470(2166), 20130849 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ambrose, D.M., Wilkening, J.: Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension. Proc. Natl. Acad. Sci. 107(8), 3361–3366 (2010)

    Article  Google Scholar 

  11. Ambrose, D.M., Wilkening, J.: Dependence of time-periodic votex sheets with surface tension on mean vortex sheet strength. Procedia IUTAM 11, 15–22 (2014)

    Article  Google Scholar 

  12. Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Amick, C.J., Toland, J.F.: The semi-analytic theory of standing waves. Proc. R. Soc. Lond. A 411, 123–138 (1987)

    Article  MATH  Google Scholar 

  14. Beale, J.T., Hou, T.Y., Lowengrub, J.: Convergence of a boundary integral method for water waves. SIAM J. Numer. Anal. 33(5), 1797–1843 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benney, D.J., Luke, J.C.: On the interactions of permanent waves of finite amplitude. Stud. Appl. Math. 43, 309–313 (1964)

    MathSciNet  MATH  Google Scholar 

  16. Berger, K.M., Milewski, P.A.: Simulation of wave interactions and turbulence in one-dimensional water waves. SIAM J. Appl. Math. 63(4), 1121–1140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  18. Boussinesq, J.: Essai sur la théorie des eaux courantes. Imprimerie nationale (1877)

  19. Castro, A., Córdoba, D., Fefferman, C.L., Gancedo, F., Gómez-Serrano, J.: Splash singularity for water waves. Proc. Natl. Acad. Sci. 109(3), 733–738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for the free boundary incompressible Euler equations. Ann. Math. (2) 178(3), 1061–1134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, J., Wilkening, J.: Arbitrary-order exponential time differencing schemes via Chebyshev moments of exponential functions (2019) (in preparation)

  22. Cheng, C.H.A., Coutand, D., Shkoller, S.: On the limit as the density ratio tends to zero for two perfect incompressible fluids separated by a surface of discontinuity. Commun. Partial Differ. Equ. 35(5), 817–845 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheng, C.H.A., Shkoller, S.: Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on Sobolev-class domains. J. Math. Fluid Mech. 19(3), 375–422 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cheng, C.-H.A., Coutand, D., Shkoller, S.: On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity. Commun. Pure Appl. Math. 61(12), 1715–1752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Choi, W.: Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth. J. Fluid Mech. 295, 381 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Coutand, D., Shkoller, S.: On the finite-time splash and splat singularities for the 3-d free-surface euler equations. Commun. Math. Phys. 325(1), 143–183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Coutand, D., Shkoller, S.: On the impossibility of finite-time splash singularities for vortex sheets. Arch. Ration. Mech. Anal. 221(2), 987–1033 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Deng, Y., Ionescu, A.D., Pausader, B., Pusateri, F.: Global solutions of the gravity-capillary water wave system in 3 dimensions. Acta Math. 219, 213–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dyachenko, A.L., Kuznetsov, E.A., Spector, M.D., Zakharov, V.E.: Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221, 73–79 (1996)

    Article  Google Scholar 

  34. Dyachenko, A.L., Zakharov, V.E., Kuznetsov, E.A.: Nonlinear dynamics on the free surface of an ideal fluid. Plasma Phys. Rep. 22, 916–928 (1996)

    Google Scholar 

  35. Fefferman, C., Ionescu, A.D., Lie, V.: On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165(3), 417–462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  37. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2) 175, 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Granero-Belinchón, R., Shkoller, S.: A model for Rayleigh–Taylor mixing and interface turnover. Multiscale Model. Simul. 15, 274–308 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  40. Hou, T.Y., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379–397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114, 312–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: The long-time motion of vortex sheets with surface tension. Phys. Fluids 9, 1933–1954 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 302–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. II: global solutions (arXiv preprint). arXiv:1404.7583 (2014)

  46. Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199(3), 653–804 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Iooss, G., Plotnikov, P.I., Toland, J.F.: Standing waves on an infinitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal. 177, 367–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff pdes. SIAM J. Sci. Comput. 26, 1214–1233 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Knightly, G.: On a class of global solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 21(3), 211–245 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21, 1–9 (2009)

    Article  MATH  Google Scholar 

  52. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Matsuno, Y.: Nonlinear evolutions of surface gravity waves on fluid of finite depth. Phys. Rev. Let. 69(4), 609–611 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. Matsuno, Y.: Nonlinear evolution of surface gravity waves over an uneven bottom. J. Fluid Mech. 249, 121–133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  55. Matsuno, Y.: Two-dimensional evolution of surface gravity waves on a fluid of arbitrary depth. Phys. Rev. E 47(6), 4593–4596 (1993)

    Article  MathSciNet  Google Scholar 

  56. Milder, D.M.: An improved formalism for wave scattering from rough surfaces. J. Acoust. Soc. Am. 89(2), 529–541 (1991)

    Article  Google Scholar 

  57. Milder, D.M., Sharp, H.T.: An improved formalism for rough-surface scattering. II: numerical trials in three dimensions. J. Acoust. Soc. Am. 91(5), 2620–2626 (1992)

    Article  Google Scholar 

  58. Milewski, P.A., Vanden-Broeck, J.-M., Wang, Z.: Dynamics of steep two-dimensional gravity-capillary solitary waves. J. Fluid Mech. 664, 466–477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Muskhelishvili, N.I.: Singular Integral Equations, 2nd edn. Dover, New York (1992)

    Google Scholar 

  60. Nalimov, VI.: The Cauchy–Poisson problem. Dinamika Splošn. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami) 254, 104–210 (1974)

  61. Nicholls, D.P., Reitich, F.: On analyticity of travelling water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2057), 1283–1309 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Nicholls, D.P., Reitich, F.: Stable, high-order computation of traveling water waves in three dimensions. Eur. J. Mech. B Fluids 25(4), 406–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Nirenberg, L.: An abstract form of the nonlinear Cauchy–Kowalewski theorem. J. Differ. Geom. 6, 561–576 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nishida, T.: A note on a theorem of Nirenberg. J. Differ. Geom. 12, 629–633 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  65. Oseen, C.W.: Sur les formules de green généralisées qui se présentent dans l’hydrodynamique et sur quelquesunes de leurs applications. Acta Math. 35(1), 97–192 (1912)

    Article  MathSciNet  Google Scholar 

  66. Ovsjannikov, L.V.: Shallow-water theory foundation. Arch. Mech. 26(3), 407–422 (1974)

    MathSciNet  Google Scholar 

  67. Ovsjannikov, L.V.: Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification. Appl. Methods Funct. Anal. Probl. Mech. 26, 426–437 (1976)

    MathSciNet  Google Scholar 

  68. Penney, W.G., Price, A.T.: Finite periodic stationary gravity waves in a perfect liquid, part II. Philos. Trans. R. Soc. Lond. A 244, 254–284 (1952)

    Article  Google Scholar 

  69. Prince, P.J., Dormand, J.R.: High order embedded Runge–Kutta formulae. J. Comput. Appl. Math. 7, 67–75 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rayleigh, B.: On waves. Philos. Mag. 1, 257–279 (1876)

    Article  MATH  Google Scholar 

  71. Schneider, G., Wayne, E.C.: Justification of the NLS approximation for a quasilinear water wave model. J. Differ. Equ. 251(2), 238–269 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. Schwartz, L.W., Whitney, A.K.: A semi-analytic solution for nonlinear standing waves in deep water. J. Fluid Mech. 107, 147–171 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  73. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  74. Shinbrot, M.: The initial value problem for surface waves under gravity, I: the simplest case. Indiana Univ. Math. J. 25(3), 281–300 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  75. Stanley, R.P.: Catalan Numbers. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  76. Stokes, G.G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441–473 (1847)

    Google Scholar 

  77. Sulem, C., Sulem, P.-L., Bardos, C., Frisch, U.: Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability. Commun. Math. Phys. 80(4), 485–516 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  78. Tadjbakhsh, I., Keller, J.B.: Standing surface waves of finite amplitude. J. Fluid Mech. 8, 442–451 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  79. Wilkening, J.: Breakdown of self-similarity at the crests of large amplitude standing water waves. Phys. Rev. Lett 107, 184501 (2011)

    Article  Google Scholar 

  80. Wilkening, J., Yu, J.: Overdetermined shooting methods for computing standing water waves with spectral accuracy. Comput. Sci. Discov. 5, 014017 (2012)

    Article  Google Scholar 

  81. Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in \(2\)-D. Invent. Math. 130(1), 39–72 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  82. Sijue, W.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. Sijue, W.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  85. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their numerous suggestions that have improved the exposition of this article. JW was supported by NSF DMS-1716560 and by the Department of Energy, Office of Science, Applied Scientific Computing Research, under award number DE-AC02-05CH11231. RGB was partially funded by University of Cantabria and the Department of Mathematics, Statistics and Computation. SS was supported by NSF DMS-1301380, the Department of Energy, Advanced Simulation and Computing (ASC) Program, and by DTRA HDTRA11810022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Shkoller.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aurther, C.H., Granero-Belinchón, R., Shkoller, S. et al. Rigorous Asymptotic Models of Water Waves. Water Waves 1, 71–130 (2019). https://doi.org/10.1007/s42286-019-00005-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-019-00005-w

Keywords

Navigation