Skip to main content
Log in

Cubic Gold Nanoparticles Synthesis in the Presence of an Thioether Oligomer DDT-Poly(4-Vinylpyridine)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In the present research work, we report a facile, in-situ, and seedless-based synthesis method of cubic gold nanoparticles at room temperature by using thioether oligomer ligand DDT-P4VP [dodecanethiol-poly(4-vinylpyridine)] as a functionalization and stabilization agent. Thioether oligomer ligand was synthesized by bulk radical polymerization in the presence of dodecanethiol, while; the synthesis of cubic gold nanoparticles was carried out by a reduction reaction by NaBH4 in the presence of the pre-synthesized thioether oligomer ligand. The effect of stirring condition on the growth of nanoparticles and their final morphology has been investigated. Synthesized thioether oligomer ligand and gold nanoparticles were thoroughly characterized using numerous techniques such as Size Exclusion Chromatography (SEC), Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR), Transmission Electron Microscope (TEM), and UV − visible spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  PubMed  Google Scholar 

  2. Kohout C, Santi C, Polito L (2018) Anisotropic gold nanoparticles in biomedical applications. Int J Mol Sci 19:3385

    Article  PubMed Central  Google Scholar 

  3. Hua Y, Chandra K, Dam DHM, Wiederrecht GP, Odom TW (2015) Shape-dependent nonlinear optical properties of anisotropic gold Nanoparticles. J Phys Chem Lett 6:4904–4908

    Article  CAS  PubMed  Google Scholar 

  4. Yingxin W, Qianqian Z (2020) Preparation of novel anisotropic gold nanoplatform as NIR absorbing agents for photothermal therapy of liver cancer and enhanced ultrasound contrast imaging. Mater Res Express 7:125006

    Article  Google Scholar 

  5. Chen Q, Ren Y, Yin Y, Qi H (2021) Anisotropic scattering characteristics of nanoparticles in different morphologies : improving the temperature uniformity of tumors during thermal therapy using forward scattering. Biomed Opt Express 12:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raia M, Ingle AP, Gupta A, Brandelli A (2015) Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int J Pharm 496:159–172

    Article  Google Scholar 

  7. Singh AV, Batuwangala M, Mundra R, Mehta K, Patke S, Falletta E, Patil R, Gade WN (2014) Biomineralized anisotropic gold microplate—macrophage interactions reveal frustrated phagocytosis-like phenomenon : a novel paclitaxel drug delivery vehicle. ACS Appl Mater Interfaces 6:14679–14689

    Article  CAS  PubMed  Google Scholar 

  8. Peng Y, Xiong B, Peng L, Li H, He Y, Yeung ES (2014) Recent advances in optical imaging with anisotropic plasmonic nanoparticles. Anal Chem 87:200–215

    Article  PubMed  Google Scholar 

  9. Ye Z, Wei L, Zeng X, Weng R, Shi X, Wang N, Orcid LC, Xiao L (2018) Background-free imaging of viral capsid proteins-coated anisotropic nanoparticle on living cell membrane with dark-field optical microscopy. Anal Chem 90:1177–1185

    Article  CAS  PubMed  Google Scholar 

  10. Jin L, Han C (2014) Eco-friendly colorimetric detection of mercury (II) ions using label-free anisotropic nanogolds in ascorbic acid solution. Sensors Actuators B Chem 195:239–245

    Article  CAS  Google Scholar 

  11. Goettmann F, Moores A, Boissière C, Le Floch P, Sanchez C (2005) A Selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small 1:636–639

    Article  CAS  PubMed  Google Scholar 

  12. Premkumar T, Lee K, Geckeler KE (2011) Shape-tailoring and catalytic function of anisotropic gold nanostructures. Nanoscale Res Lett 6:547

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sahoo GP, Basu S, Samanta S, Misra A (2015) Microwave-assisted synthesis of anisotropic gold nanocrystals in polymer matrix and their catalytic activities. J Exp Nanosci 10:690–702

    Article  CAS  Google Scholar 

  14. Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed 53:1756–1789

    Article  CAS  Google Scholar 

  15. Ortiz-castillo JE, Gallo-villanueva RC, Madou MJ, Perez-gonzalez VH (2020) Anisotropic gold nanoparticles: a survey of recent synthetic methodologies. Coord Chem Rev 425:213489

    Article  CAS  Google Scholar 

  16. Saldías C, Bonardd S, Quezada C, Radi D, Leiva A (2017) The role of polymers in the synthesis of noble metal nanoparticles: a review. J Nanosci Nanotechnol 17:87–114

    Article  PubMed  Google Scholar 

  17. Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640

    Article  CAS  Google Scholar 

  18. Millstone BJE, Métraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Func Mater 16:1209–1214

    Article  CAS  Google Scholar 

  19. Phiri MM, Mulder DW, Vorster BC (2019) Seedless gold nanostars with seed-like advantages for biosensing applications. R Soc Open Sci 6:181971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thiele M, Zi J, Soh E, Knauer A, Malsch D, Stranik O, Müller R, Csáki A, Henkel T, Köhler JM, Fritzsche W (2016) Gold nanocubes—direct comparison of synthesis approaches reveals the need for a microfluidic synthesis setup for a high reproducibility. Chem Eng J 288:432–440

    Article  CAS  Google Scholar 

  21. Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun 44:4580–4598

    Article  Google Scholar 

  22. Adokoh CK, Quan S, Hitt M, Darkwa J, Kumar P, Narain R (2014) Synthesis and evaluation of glycopolymeric decorated gold nanoparticles functionalized with gold-triphenyl phosphine as anti-cancer agents. Biomacromol 15:3802–3810

    Article  CAS  Google Scholar 

  23. Banu H, Kaur D, Edgar A, Sheriff A, Rayees N, Renuka N, Faheem SM, Premkumar K, Vasanthakumar G (2015) Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B Biol 149:116–128

    Article  CAS  Google Scholar 

  24. Zhou X, El Khoury JM, Qu L, Dai L, Li Q (2007) A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents. J Colloid Interface Sci 308:381–384

    Article  CAS  PubMed  Google Scholar 

  25. González-Fernández D, Torneiro M, López-Quintela MA, Lazzari M (2015) Copolymers with acetyl-protected thiol pendant groups as highly efficient stabilizing agents for gold surfaces. RSC Adv 5:13722–13726

    Article  Google Scholar 

  26. Frein S, Boudon J, Vonlanthen M, Scharf T, Barberá J, Süss-Fink G, Bürgi T, Deschenaux R (2008) Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles. Helv Chim Acta 91:2321–2337

    Article  CAS  Google Scholar 

  27. Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094

    Article  CAS  PubMed  Google Scholar 

  28. Hussain I, Graham S, Wang Z, Tan B, David C, Rannard SP, Cooper AI, Brust M, Sherrington DC (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J Am Chem Soc 127:16398–16399

    Article  CAS  PubMed  Google Scholar 

  29. Razzaque S, Hussain SZ, Hussain I, Tan B (2016) Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymers 8:156

    Article  PubMed Central  Google Scholar 

  30. Niu Y, Crooks RM (2003) Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C R Chim 6:1049–1059

    Article  CAS  Google Scholar 

  31. Huang X, Li B, Zhang H, Hussain I, Liang L, Tan B (2011) Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands. Nanoscale 3:1600–1607

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Tan B, Hussain I, Schaeffer N, Wyatt MF, Brust M, Cooper AI (2007) Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 23:885–895

    Article  CAS  PubMed  Google Scholar 

  33. Aberkane F, Barakat A, Elaissari A, Zine N, Bendaikha T, Errachid A (2019) Electrochemical sensor based on thioether oligomer poly (N-vinylpyrrolidone ) -modified gold electrode for bisphenol A detection. Electroanalysis 31:2112–2119

    Article  CAS  Google Scholar 

  34. Huang CF, Kuo SW, Chen JK, Chang FC (2005) Synthesis and characterization of polystyrene-b-poly(4-vinyl pyridine) block copolymers by atom transfer radical polymerization. J Polym Res 12:449–456

    Article  CAS  Google Scholar 

  35. Jayabharathi J, Sundari GA, Thanikachalam V, Jeeva P, Panimozhi S (2017) A dodecanethiol-functionalized Ag nanoparticle-modified ITO anode for efficient performance of organic light-emitting devices. RSC Adv 7:38923–38934

    Article  CAS  Google Scholar 

  36. Häkkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4:443–455

    Article  PubMed  Google Scholar 

  37. Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hoffmann R (2002) Sulfur-gold orbital interactions which determine the structure of alkanethiolate/Au(111) self-assembled monolayer systems. J Phys Chem B 106:12727–12736

    Article  CAS  Google Scholar 

  38. Ryu KR, Nam DH, Lee S, Ha JW (2020) Influence of the preferred orientation of pyridine derivatives with donor substituents on chemical interface damping induced in silver-coated gold nanorods with different shell thicknesses. J Phys Chem C 124:14818–14825

    Article  CAS  Google Scholar 

  39. Li J, Shi L, An Y, Li Y, Chen X, Dong H (2006) Reverse micelles of star-block copolymer as nanoreactors for preparation of gold nanoparticles. Polymer (Guildf) 47:8480–8487

    Article  CAS  Google Scholar 

  40. Danger BR, Fan D, Vivek JP, Burgess IJ (2012) Electrochemical studies of capping agent adsorption provide insight into the formation of anisotropic gold nanocrystals. ACS Nano 12:11018–11026

    Article  Google Scholar 

  41. Razzaque S, Hussain SZ, Hussain I, Tan B (2016) Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymers (Basel) 8:156

    Article  Google Scholar 

  42. Wei MZ, Deng ST, Zhang Q, Cheng Z, Li S (2021) Seed-mediated synthesis of gold nanorods at low concentrations of CTAB. ACS Omega 6:9188–9195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Gu X, Nie C, Jiang Z, Xie Z, Lin C (2005) Shape controlled growth of gold nanoparticles by a solution synthesis. Chem Commun 33:4181–4183

    Article  Google Scholar 

  45. Abdelhalim MAK, Mady MM, Ghannam MM (2012) Physical properties of different gold nanoparticles: ultraviolet–visible and fluorescence measurements. J Nanomed Nanotechnol 3:133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fairouz Aberkane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aberkane, F., Zine, N., Errachid, A. et al. Cubic Gold Nanoparticles Synthesis in the Presence of an Thioether Oligomer DDT-Poly(4-Vinylpyridine). Chemistry Africa 5, 405–412 (2022). https://doi.org/10.1007/s42250-021-00310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00310-3

Keywords

Navigation