Skip to main content

Advertisement

Log in

Optimization of manganese-rich slag extraction from low-manganese ore smelting by response surface methodology

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Manganese-rich slag is a raw material for smelting silicon–manganese alloys using an electric furnace. The blast furnace method is the main method for smelting manganese-rich slag. This method has the problems of a long process, large coke consumption, and easy volatilization of metals such as lead and zinc, which affects smelting safety. A new technology for smelting manganese-rich slag with low-manganese high-iron ore by smelting reduction optimization was proposed. This technology has the advantages of a short process, low energy consumption, low carbon emissions, and comprehensive recycling of lead, zinc, and other metals. According to the chemical composition, X-ray diffraction analysis, and particle size analysis of Cote d’Ivoire low-manganese ore, an experiment was carried out on manganese-rich slag by reduction–smelting separation. Combined with the design scheme of the Box–Behnken principle, three experimental factors (temperature, basicity, and carbon content) were selected as the influences to study. The influence that each factor has on the recovery rate of manganese was studied by response surface methodology, and the experimental factors were optimized. The results show that under the conditions of a reduction-smelting temperature of 1402 °C, basicity of R = 0.10, and carbon content of 10 mass%, the recovery rate of manganese is 97%. A verification experiment was carried out under the optimal conditions, and the error was only 1.24%; this proves that the response surface method prediction model is reliable and accurate. This is of great significance for the comprehensive utilization of lean-manganese ore resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.B. Zhang, Y. Zhao, Z.X. You, D.X. Duan, G.H. Li, T. Jiang, J. Cent. South Univ. 22 (2015) 2515–2520.

    Article  Google Scholar 

  2. F.F. Wu, H. Zhong, S. Wang, S.F. Lai, J. Cent. South Univ. 21 (2014) 1763–1770.

    Article  Google Scholar 

  3. M.N. El Hazek, T.A. Lasheen, A.S. Helal, Hydrometallurgy 84 (2006) 187–191.

    Article  Google Scholar 

  4. P.W. Harben, J.M. Harris, C. Raleigh, Manganese uses and markets, Industrial Minerals Information Ltd., London, UK, 1998.

    Google Scholar 

  5. A.A. Nayl, I.M. Ismail, H.F. Aly, Int. J. Miner. Process. 100 (2011) 116–123.

    Article  Google Scholar 

  6. R.N. Sahoo, P.K. Naik, S.C. Das, Hydrometallurgy 62 (2001) 157–163.

    Article  Google Scholar 

  7. X.L. Lei, Y.D. Hu, Y.L. Du, F.L. Zhang, D. Wang, China Mining Magazine 24 (2015) No. S1, 19–21.

    Google Scholar 

  8. A. D'Harambure, Y.F. Yang, J. Yang, China Manganese Ind. 39 (2021) No. 4, 1–4.

    Google Scholar 

  9. N.J. Beukes, J. Gutzmer, A.M. Burger, S. Afr. J. Geol. 98 (1995) 430–451.

    Google Scholar 

  10. J. Gutzmer, N.J. Beukes, Ore Geol. Rev. 11 (1996) 405–428.

    Article  Google Scholar 

  11. S. Frost-Killian, S. Master, R.P. Viljoen, M.G.C. Wilson, Episodes 39 (2016) 85–103.

    Article  Google Scholar 

  12. USGS, Mineral Commodity Summaries (2021–01–31)[2021–09–10]. https://minerals.usga.gov/minerals/pubs/commodity/manganese/mcs-2020-manganese.

  13. N.J. Beukes, J. Gutzmer, in: S. Hagemann, C.A. Rosière, J. Gutzmer, N.J. Beukes (Eds.), Reviews in Economic Geology, Vol. 15, Society of Economic Geologists, 2008, pp. 5–47.

    Google Scholar 

  14. V.N. Kuleshov, Lithol. Miner. Resour. 46 (2011) 546.

    Article  Google Scholar 

  15. V.N. Kuleshov, E.A. Zhegallo, E.L. Shkol'nik, Dokl. Earth Sci. 441 (2011) 1611–1615.

    Article  Google Scholar 

  16. T. De Putter, G. Ruffet, J. Yans, F. Mees, Ore Geol. Rev. 71 (2015) 350–362.

    Article  Google Scholar 

  17. V. Kuleshov, Isotope geochemistry: the origin and formation of manganese rocks and ores, Elsevier Inc., Amsterdam, Netherlands, 2016.

    Google Scholar 

  18. C.A. Moreira, M. Rezende Borges, G.M. Lira Vieira, W. Malagutti Filho, M.A. Fernándes Montanheiro, Geofís. Intl. 53 (2014) 199–210.

  19. J. Xiang, J. Chen, L. Bagas, S. Li, H. Wei, B. Chen, Ore Geol. Rev. 116 (2020) 103261.

  20. D.L. Qin, N.X. Chen, China Manganese Ind. 39 (2021) No. 4, 10–12 + 21.

  21. Y. Cong, Q.J. Dong, K.Y. Xiao, J.P. Chen, Y.B. Gao, J.N. Yin, Earth Sci. Front., 25 (2018) No. 3, 118–137.

    Google Scholar 

  22. Z.N. Liu, X.Y. Zhang, H. Xu, Q.S. Wang, M. Chen, China Mining Magazine 24 (2015) No. 8, 8–15.

    Google Scholar 

  23. Z.N. Liu, H. Xu, Q.S. Wang, M. Chen, Resour. Ind. 17 (2015) No. 6, 38–43.

    Google Scholar 

  24. L. Gao, Z. Liu, M. Chu, R. Wang, Z. Wang, C. Feng, Sep. Sci. Technol. 54 (2019) 195–206.

    Article  Google Scholar 

  25. K. Li, J. Chen, J. Peng, M. Omran, G. Chen, J. Clean. Prod. 260 (2020) 121074.

  26. S. He, C. Liao, X. Wang, J. Wang, Mining Metallurgy & Exploration 37 (2020) 433–442.

    Google Scholar 

  27. V. Singh, N. Biswas, T. Chakravarty, S.M. Rao, P.K. Banerjee, J. Metall. Mater. Sci. 55 (2013) 59–65.

    Google Scholar 

  28. V. Tathavadkar, V. Singh, P.K. Mishra, P. Mallick, B.D. Nanda, Ironmak. Steelmak. 37 (2010) 103–111.

    Article  Google Scholar 

  29. Y.L. Liang, J.B. Lei, Ferro-Alloys 52 (2021) No. 1, 6–12.

    Google Scholar 

  30. C.Z. Zhang, P. Zhou, China Manganese Industry 38 (2020) No. 1, 1–3.

    Google Scholar 

  31. J. Tong, Ferro-Alloys 35 (2004) No. 1, 37–39.

    Google Scholar 

  32. H. He, China Manganese Industry 35 (2017) No. 1, 23–24.

    Google Scholar 

  33. X.D. Wu, X.Q. Ming, G.H. Huang, N.X. Chen, B.L. Huang, W.S. Lu, China Manganese Industry 33 (2015) No. 3, 34–36+39.

  34. X.Q. Ming, X.D. Wu, G.H. Huang, China Manganese Ind. 34 (2016) No. 3, 131–133.

    Google Scholar 

  35. Z.J. Li, Q. Zhao, H.Q. Wan, Ferro-Alloys 42 (2011) No. 3, 21–24.

    Google Scholar 

  36. J.J. Gao, X.Y. Wan, Y.H. Qi, J. Zhang, F. Wang, China Metall. 26 (2016) No. 10, 54–58.

    Google Scholar 

  37. P. Zhao, Process for coal-based direct reduction and magnetic separation of high-iron manganese ore, Central South University, Changsha, China, 2012.

    Google Scholar 

  38. Y.B. Zhang, Z.X. You, G.H. Li, T. Jiang, Hydrometallurgy 133 (2013) 126–132.

    Article  Google Scholar 

  39. S.P. Yang, S.W. Cao, F. He, J. Iron Steel Res. 31 (2019) 897–903.

    Google Scholar 

  40. S.P. Yang, J.F. Zhou, S.Q. Guo, P.H. Zhang, M. Wang, Nonferrous Metals Eng. 7 (2017) No. 5, 48–53.

    Google Scholar 

  41. J. Zuo, L.J. Yan, X.Q. Yang, Y. Cheng, J. Univ. Sci. Technol. Beijing 32 (2010) 1045–1052.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-han Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Sp., Li, Jh., Gao, Wb. et al. Optimization of manganese-rich slag extraction from low-manganese ore smelting by response surface methodology. J. Iron Steel Res. Int. 29, 1573–1582 (2022). https://doi.org/10.1007/s42243-022-00781-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00781-9

Keywords

Navigation