Skip to main content
Log in

Dynamic and quasi-static compressive performance of integral-forming aluminum foam sandwich

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Strain rate sensitivity and deformation mechanism of integral-forming aluminum foam sandwich (IFAFS) under quasi-static and dynamic compression were investigated. Split Hopkinson pressure bar experiments with high-speed video cameras were conducted to analyze strain rate dependency and actual deformation mechanism of IFAFS. X-ray microtomography technique (Micro-CT) based on 3D finite element (FE) was used to study stress and plastic strain contours of IFAFS sample and to predict stress distribution and deformation history under both dynamic and quasi-static loadings. Micro-inertia effect of typical cell structures was quantitatively analyzed by FE simulation. The results showed that IFAFS is sensitive to strain rate where the deformation mode under dynamic loading is different from that observed under quasi-static loading. With strain rate increasing, good metallurgical bonding of face sheet and foam core layer contributed to improving the elastic modulus and peak stress of IFAFS. Furthermore, finite element model confirmed that micro-inertia effect of IFAFS can be ignored during dynamic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X. Qiu, V.S. Deshpande, N.A. Fleck, Eur. J. Mech. A Solid. 22 (2003) 801–814.

  2. S.L. Cheng, X.Y. Zhao, Y.J. Xin, S.Y. Du, H.J. Li, Compos. Struct. 129 (2015) 157–164.

  3. M.D. Goel, V.A. Matsagar, A.K. Gupta, Int. J. Impact Eng. 77 (2015) 134–146.

  4. S. Raeisi, J. Kadkhodapour, A. Tovar, Compos. Struct. 214 (2019) 34–46.

  5. D. Ruan, G. Lu, F.L. Chen, E. Siores, Compos. Struct. 57 (2002) 331–336.

  6. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, S. Li, J. Mech. Phys. Solid. 53 (2005) 2174–2205.

  7. K.Y.G. McCullough, N.A. Fleck, M.F. Ashby, Acta Mater. 47 (1999) 2323–2330.

  8. M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, M. Turner, Int. J. Impact Eng. 114 (2018) 111–122.

  9. U.S. Lindholm, J. Mech. Phys. Solid. 12 (1964) 317–335.

  10. C.R. Calladine, R.W. English, Int. J. Mech. Sci. 26 (1984) 689–701.

  11. X.Y. Su, T.X. Yu, S.R. Reid, Int. J. Impact Eng. 16 (1995) 651–672.

  12. X.Y. Su, T.X. Yu, S.R. Reid, Int. J. Impact Eng. 16 (1995) 673–689.

  13. S. Lee, F. Barthelat, N. Moldovan, H.D. Espinosa, H.N.G. Wadley, Int. J. Solids Struct. 43 (2006) 53–73.

  14. X.T. Huo, H. Liu, Q.T. Luo, G.Y. Sun, Q. Li, Int. J. Mech. Sci. 181 (2020) 105681.

  15. H. Zhao, I. Elnasri, Y. Girard, Int. J. Impact Eng. 34 (2007) 1246–1257.

  16. W.H. Hou, F. Zhu, G.X. Lu, D.N. Fang, Int. J. Impact Eng. 37 (2010) 1045–1055.

  17. K. Mohan, T.H. Yip, S. Idapalapati, Z. Chen, Mater. Sci. Eng. A. 529 (2011) 94–101.

  18. J.L. Yu, E.H. Wang, J.R. Li, Z.J. Zheng, Int. J. Impact Eng. 35 (2008) 885–894.

  19. S. Ramachandra, P.S. Kumar, U. Ramamurty, Scripta Mater. 49 (2003) 741–745.

  20. R.J. Dou, S.W. Qiu, Y. Ju, Y.B. Hu, Comput. Mater. Sci. 112 (2016) 205–209.

  21. A. Xu, T. Vodenitcharova, K. Kabir, E.A. Flores-Johnson, M. Hoffman, Mater. Sci. Eng. A 599 (2014) 125–133.

  22. Y. Zhao, Z.H. Yang, T.L. Yu, D.B. Xin, Constr. Build. Mater. 273 (2021) 121996.

  23. I. Ivañez, S. Sanchez-Saez, Compos. Struct. 106 (2013) 716–723.

  24. H.F. Xi, L.Q. Tang, S.H. Luo, Y.P. Liu, Z.Y. Jiang, Z.J. Liu, Compos. Part B 130 (2017) 217–229.

  25. X.Q. Chang, L.Y. Zhang, Y.B. Yang, J.L. Ren, J. Iron Steel Res. Int. 23 (2016) 64–68.

  26. B.A. Gama, S.L. Lopatnikov, J.W. Gillespie, Appl. Mech. Rev. 57 (2004) 223–250.

  27. R. Edwin Raj, V. Parameswaran, B.S.S. Daniel, Mater. Sci. Eng. A 526 (2009) 11–15.

  28. P.F. Wang, S.L. Xu, Z.B. Li, J.L. Yang, H. Zheng, S.S. Hu, Mater. Sci. Eng. A 599 (2014) 174–179.

  29. P.F. Li, N.V. Nguyen, H. Hao, Mater. Des. 89 (2016) 636–641.

  30. M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, J. Banhart, Acta Mater. 58 (2010) 5031–5042.

  31. Y.K. An, H.Y. Ma, J.S. Zhang, P.F. Zhang, E.T. Zhao, S.Y. Yang, J. Mater. Process. Technol. 296 (2021) 117212.

  32. I. Duarte, J. Banhart, Acta Mater. 48 (2000) 2349–2362.

  33. I. Duarte, M. Oliveira, F. Garcia-Moreno, M. Mukherjee, J. Banhart, Colloids Surf. A 438 (2013) 47–55.

  34. T. Mukai, T. Miyoshi, S. Nakano, H. Somekawa, K. Higashi, Scripta Mater. 54 (2006) 533–537.

  35. M.A. Kader, P.J. Hazell, M.A. Islam, S. Ahmed, M.M. Hossain, J.P. Escobedo, M. Saadatfar, Mater. Sci. Eng. A 818 (2021) 141379.

  36. P. Li, N. Petrinic, C.R. Siviour, R. Froud, J.M. Reed, Mater. Sci. Eng. A 515 (2009) 19–25.

  37. K.A. Dannemann, J. Lankford, Mater. Sci. Eng. A 293 (2000) 157–164.

  38. Z.B. Li, X.G. Chen, B.H. Jiang, F.Y. Lu, Compos. Struct. 145 (2016) 142–148.

  39. M.A. Kader, M.A. Islam, M. Saadatfar, P.J. Hazell, A.D. Brown, S. Ahmed, J.P. Escobedo, Mater. Des. 118 (2017) 11–21.

  40. R.X. Huang, S.Q. Ma, M.D. Zhang, J.J. Xu, Z.Y. Wang, Mater. Sci. Eng. A 756 (2019) 302–311.

  41. P. Wang, S. Xu, Z. Li, J. Yang, C. Zhang, H. Zheng, S. Hu, Mater. Sci. Eng. A 620 (2015) 253–261.

  42. Z.H. Wang, J.H. Shen, G.X. Lu, L.M. Zhao, Mater. Sci. Eng. A 528 (2011) 2326–2330.

  43. J. Li, C.Q. Wu, H. Hao, Z.X. Liu, Y.K. Yang, Compos. Struct. 203 (2018) 599–613.

  44. T. Fiedler, M. Taherishargh, L. Krstulović-Opara, M. Vesenjak, Mater. Sci. Eng. A 626 (2015) 296–304.

  45. M. Vesenjak, M.A. Sulong, L. Krstulović-Opara, M. jBorovinšek, V. Mathier, T. Fiedler, Mech. Mater. 93 (2016) 96–108.

  46. Y. Mu, G. Yao, H. Luo, Mater. Des. 31 (2010) 1007–1009.

  47. B.Y. Zhang, Y.F. Lin, S. Li, D.X. Zhai, G.H. Wu, Compos. Part B 98 (2016) 288–296.

  48. Y.D. Liu, J.L. Yu, Z.J. Zheng, J.R. Li, Int. J. Solids Struct. 46 (2009) 3988–3998.

Download references

Acknowledgements

This work was supported by Key R&D Program of Hebei Province (19251013D), Special Fund for Military-civilian Integration Development of Hebei Province, Provincial School Science and Technology Cooperation Development Fund Project of Hebei Province and National Students Innovation and Entrepreneurship Training Program (No. X202110080054). The authors gratefully acknowledge the 3D visualization analysis provided by Tianjin Sanying Precision Instrument Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-chuan Xia or Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Zhang, Zc., Ding, J. et al. Dynamic and quasi-static compressive performance of integral-forming aluminum foam sandwich. J. Iron Steel Res. Int. 30, 392–403 (2023). https://doi.org/10.1007/s42243-022-00770-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00770-y

Keywords

Navigation