Skip to main content
Log in

Analysis of longitude profiled rolling process of Cu/Al cladded sheet and evaluation of outlet warpage

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Longitude profiled cladded sheet is obtained by rolling bimetal cladded sheet with variable gauge rolling technology. The longitude profiled rolling process of Cu/Al cladded sheets was studied by finite element method and experiments. The rolling force rises with the increase in reduction, and a sudden change appears at the end of the thickness variation zone. The thickness ratio of copper layer is enlarged after rolling owing to its relatively large deformation resistance and continues to rise with the increase in reduction rate. Lower elongation of copper side leads to the warpage of exit metal to copper side, which further hinders the deformation of copper. The influence of asymmetric rolling parameters indicates that increasing the work roll diameter ratio, speed radio, and friction coefficient on Al side can reduce the warpage when the reduction rate is below a certain value depending on the thickness ratio and other rolling parameters. Comparison of experiments and simulation results showed good agreement and verified the finite element model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Li, K. Nagai, F.X. Yin, Sci. Technol. Adv. Mater. 9 (2008) 023001.

  2. A.A. Bykov, Steel Transl. 41 (2011) 778–786.

    Article  Google Scholar 

  3. H. Su, X.B. Luo, F. Chai, J.C. Shen, X.J. Sun, F. Lu, J. Iron Steel Res. Int. 22 (2015) 977–982.

    Article  Google Scholar 

  4. X.H. Liu, Q.L. Zhao, L.Z. Liu, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 483–493.

  5. S. Suzuki, R. Muraoka, T. Obinata, S. Endo, T. Horita, K. Omata, JFE Tech. Rep. (2004) No. 2, 41–48.

  6. Y. Fukumoto, M. Nagai, Prog. Struct. Engng. Mater. 2 (2000) 34–40.

    Article  Google Scholar 

  7. H.L. Yu, K. Tieu, C. Lu, H.T. Zhu, X.H. Liu, Steel Res. Int. 84 (2013) 1203–1208.

    Article  Google Scholar 

  8. G.J. Zhang, X.H. Liu, Adv. Mater. Res. 418–420 (2012) 1232–1236.

    Google Scholar 

  9. D.C. Wang, L.C. Dong, H.M. Liu, Y. Wang, J. Iron Steel Res. Int. 22 (2015) 279–287.

    Article  Google Scholar 

  10. Y. Zhang, J. Tan, J. Iron Steel Res. Int. 22 (2015) 703–708.

    Article  Google Scholar 

  11. X.H. Liu, G.J. Zhang, J. Iron Steel Res. 24 (2012) No. 4, 10–13, 18.

  12. X.H. Liu, G.J. Zhang, Y. Zhi, Chin. Sci. Bull. 58 (2013) 1769–1774.

    Article  Google Scholar 

  13. W. Yu, G.J. Sun, J. Univ. Sci. Technol. Beijing 36 (2014) 241–245.

    Google Scholar 

  14. J.S. Wang, Z.J. Jiao, Q.L. Zhao, X.H. Liu, G.D. Wang, Iron and Steel 36 (2001) No. 10, 39–42.

    Google Scholar 

  15. J.S. Wang, Q.L. Zhao, Z.J. Jiao, X.H. Liu, G.D. Wang, J. Iron Steel Res. 14 (2002) No. 2, 18–21.

    Google Scholar 

  16. P. Du, X.L. Hu, J. Wang, X.H. Liu, J. Iron Steel Res. 21 (2009) No. 11, 27–30.

    Google Scholar 

  17. H.W. Zhang, X.H. Liu, L.Z. Liu, P. Hu, J.L. Wu, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 1198–1204.

  18. C.H. Jeon, S.W. Han, B.D. Joo, C.J. Van Tyne, Y.H. Moon, Met. Mater. Int. 19 (2013) 1069–1076.

    Article  Google Scholar 

  19. L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, H.Q. Ye, Compos. Part B Eng. 42 (2011) 1468–1473.

    Article  Google Scholar 

  20. M.J. Kim, K.S. Lee, S.H. Han, S.I. Hong, Mater. Charact. 174 (2021) 111021.

  21. S.C. Pan, M.N. Huang, G.Y. Tzou, S.W. Syu, J. Mater. Process Technol. 177 (2006) 114–120.

    Article  Google Scholar 

  22. X.B. Li, G.Y. Zu, P. Wang, Mater. Sci. Eng. A 562 (2013) 96–100.

    Article  Google Scholar 

  23. S. Li, C. Luo, Z.D. Liu, J.W. Zhao, J.C. Han, T. Wang, J. Manuf. Process. 60 (2020) 75–85.

    Article  Google Scholar 

  24. X.B. Li, G.Y. Zu, M.M. Ding, Y.L. Mu, P. Wang, Mater. Sci. Eng. A 529 (2011) 485–491.

    Article  Google Scholar 

  25. F. Afrouz, A. Parvizi, J. Manuf. Process. 20 (2015) 162–171.

    Article  Google Scholar 

  26. M. Qwamizadeh, M. Kadkhodaei, M. Salimi, Int. J. Adv. Manuf. Technol. 73 (2014) 521–533.

    Article  Google Scholar 

  27. C.H. Lee, J.P. Park, Y.H. Moon, Adv. Mech. Eng. 6 (2014) 375162.

  28. H. Maleki, S. Bagherzadeh, B. Mollaei-Dariani, K. Abrinia, J. Mater. Eng. Perform. 22 (2013) 917–925.

    Article  Google Scholar 

  29. L. Hao, H.S. Di, D.Y. Gong, J. Iron Steel Res. Int. 20 (2013) No. 5, 34–37.

    Article  Google Scholar 

  30. H.C. Tseng, C. Hung, C.C. Huang, Int. J. Adv. Manuf. Technol. 49 (2010) 1029–1036.

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51674222 and 51974278) and Yanshan University (15LGA003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-na Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Jn., Chen, C., Wang, S. et al. Analysis of longitude profiled rolling process of Cu/Al cladded sheet and evaluation of outlet warpage. J. Iron Steel Res. Int. 29, 973–982 (2022). https://doi.org/10.1007/s42243-022-00759-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00759-7

Keywords

Navigation