Skip to main content
Log in

Hot deformation behavior and processing map of low-alloy offshore steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of a low-alloy offshore steel was systematically investigated within the temperature range of 850–1150 °C and strain rate range of 0.01–10 s–1, via hot compression testing. The hot working equation, grain size model and recrystallization kinetic models of the steel were developed by fitting the experimental data. The results show that the decrease in Zener–Hollomon Z-parameter value (the increase in deformation temperature and the decrease in strain rate) is beneficial for the occurrence of dynamic recrystallization, and the grain size can be refined by increasing the Z-parameter value within the deformation range of dynamic recrystallization. However, when the Z-parameter value is higher than 3.43 × 1016, dynamic recrystallization will be difficult to occur within the range of experimental deformation conditions. Additionally, processing maps at different strains were constructed. According to the processing map and microstructural analysis, the optimal hot working conditions of the studied steel are within the temperature range of 1000–1100 °C and strain rate range of 0.1–1 s−1, and a complete recrystallization microstructure with fine homogeneous grains could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z.Y. Jia, Y. Yang, Z. He, H.B. Ma, F. Ji, Appl. Ocean Res. 93 (2019) 101942.

    Article  Google Scholar 

  2. J. Zhang, Q.W. Cai, H.B. Wu, K. Zhang, B. Wu, J. Iron Steel Res. Int. 19 (2012) 67–72.

    Google Scholar 

  3. W.H. Huang, H.W. Yen, Y.L. Lee, J. Mater. Res. Technol. 8 (2019) 1476–1485.

    Article  Google Scholar 

  4. H.K. Zhang, H. Xiao, X.W. Fang, Q. Zhang, R.E. Logé, K. Huang, Mater. Des. 193 (2020) 108873.

    Article  Google Scholar 

  5. J. Han, L. Li, J.W. Yang, W.S. Zhou, F. Yu, W.Q. Cao, J. Iron Steel Res. 27 (2015) No. 4, 56–62.

    Google Scholar 

  6. F.M. Qin, H. Zhu, Z.X. Wang, X.D. Zhao, W.W. He, H.Q. Chen, Mater. Sci. Eng. A 684 (2017) 634–644.

    Article  Google Scholar 

  7. W. Roberts, B. Ahlblom, Acta Metall. 26 (1978) 801–813.

    Article  Google Scholar 

  8. E.I. Poliak, J.J. Jonas, Acta Mater. 44 (1996) 127–136.

    Article  Google Scholar 

  9. A. Najafizadeh, J.J. Jonas, ISIJ Int. 46 (2006) 1679–1684.

    Article  Google Scholar 

  10. A. Cingara, H.J. McQueen, J. Mater. Process. Technol. 36 (1992) 17–30.

    Article  Google Scholar 

  11. S.H. Zahiri, C.H.J. Davies, P.D. Hodgson, Scripta Mater. 52 (2005) 299–304.

    Article  Google Scholar 

  12. J.J. Jonas, X. Quelennec, L. Jiang, É. Martin, Acta Mater. 57 (2009) 2748–2756.

    Article  Google Scholar 

  13. P. Zhou, Q.X. Ma, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 907–920.

  14. N. Yan, H.S. Di, H.Q. Huang, R.D.K. Misra, Y.G. Deng, Acta Metall. Sin. (Engl. Lett.) 32 (2019) 1021–1031.

  15. Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 422–430.

  16. Z.X. Shi, X.F. Yan, C.H. Duan, J.G. Song, M.H. Zhao, J. Wang, J. Iron Steel Res. Int. 24 (2017) 625–633.

    Article  Google Scholar 

  17. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Mater. Trans. A 15 (1984) 1883–1892.

    Article  Google Scholar 

  18. S.V.S.N. Murty, B.N. Rao, B.P. Kashyap, J. Mater. Process. Technol. 166 (2005) 268–278.

    Article  Google Scholar 

  19. X. Zhang, S.L. Li, S.Y. Bian, L. Yan, J. Iron Steel Res. 32 (2020) 423–428.

    Google Scholar 

  20. D.S. Sun, Y.H. Chen, K. Zhang, F. Cen, Iron and Steel 50 (2015) No. 11, 93–97.

    Google Scholar 

  21. H.W. Luo, G.H. Shen, Acta Metall. Sin. 56 (2020) 494–512.

    Google Scholar 

  22. Y.Q. Tian, G. Tian, X.P. Zheng, J.Y. Song, Y.L. Wei, L.S. Chen, J. Iron Steel Res. 30 (2018) 505–514.

    Google Scholar 

  23. J.R. Cao, Z.D. Liu, S.C. Cheng, G. Yang, J.X. Xie, Acta Metall. Sin. 43 (2007) 35–40.

    Google Scholar 

  24. S.F. Medina, C.A. Hernandez, Acta Mater. 44 (1996) 137–148.

    Article  Google Scholar 

  25. Y.Z. He, D.H. Chen, T.Q. Lei, Y. Saito, J. Iron Steel Res. 12 (2000) No. 1, 26–30.

    Google Scholar 

  26. Z.Q. Cui, Y.C. Qin, Metallography and heat treatment, 3rd ed., China Machine Press, Beijing, China, 2000.

    Google Scholar 

  27. B.J. Yu, X.J. Guan, J. Zhao, L.J. Zhou, L.J. Wang, Q.Q. Liu, Trans. Mater. Heat Treat. 32 (2011) No. 1, 150–154.

    Google Scholar 

  28. H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322 (2002) 43–63.

    Article  Google Scholar 

  29. O. Sivakesavam, Y.V.R.K Prasad, Mater. Sci. Eng. A 323 (2002) 270–277.

    Article  Google Scholar 

  30. X.Z. Shi, S.W. Du, S.M. Chen, J. Iron Steel Res. 31 (2019) 31–39.

    Google Scholar 

  31. X.Y. Wang, D.K. Wang, J.S. Jin, J.J. Li, Mater. Sci. Eng. A 761 (2019) 138044.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51604241, 51771166 and 51871192) and Hebei Province Natural Science Foundation (Grant No. E2016203395), Qinhuangdao Research and Development Plan of Science and Technology (201602A014) and Open Research Program of National Engineering Research Center for Equipment and Technology of Cold Strip Rolling (NECSR-201503), the Iron and Steel Joint Foundation of Hebei Province (E2020402016) and Funding Project of Overseas Returnees from Hebei Province (C201806) and Open Topic of Key Laboratory of Material Forming and Structure Property Control from University of Science and Technology Liaoning (USTLKFSY201708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-liang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Sp., Gao, Xl., Liu, W. et al. Hot deformation behavior and processing map of low-alloy offshore steel. J. Iron Steel Res. Int. 29, 474–483 (2022). https://doi.org/10.1007/s42243-021-00603-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00603-4

Keywords

Navigation