Skip to main content
Log in

Cold compression deformation method for reducing residual stress and uniformizing micro-property in ferrite steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To reduce internal residual stress and homogenize micro-property of hot-rolled ferrite steel, the cold compression deformation method with small reduction rate has been performed in the hot-rolled samples, and X-ray diffraction and nanoindentation test have been used to detect the residual stress and micro-property. The samples with deformation rate of 0–5.59% or annealing at 550 °C are analyzed. The results show that, due to the coupling effect of thermal expansion and cold contraction and the volume expansion of microstructural transformation from austenite to ferrite, compressive residual stress was found inside the hot-rolled samples. With the increase in cold compression deformation, the dislocation density increased and the microhardness increased gradually, and there is no obvious rule for the change of mean nano-hardness in micro-zone for the center of samples. However, the uniformity of nano-hardness in the micro-zone increased first and then decreased, and the value of residual stress has obvious corresponding relationship with the uniformity of micro-zone property. The cold compression deformation with appropriate reduction rate can reduce residual stress and improve nano-hardness uniformity of the hot-rolled samples, but more deformation (such as reduction rate ε = 5.59%) makes residual stress increase and makes uniformity of nano-hardness deteriorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Katsumata, K. Koide, H. Kaji, Tetsu-to-Hagane 75 (1989) 353–360.

    Article  Google Scholar 

  2. S. Chandra, U.S. Dixit, J. Mater. Process. Technol. 152 (2004) 9–16.

    Article  Google Scholar 

  3. B. Li, Q.D. Zhang, X.F. Zhang, Chinese Journal of Engineering 37 (2015) 231–237.

    Google Scholar 

  4. J.D. Cui, Y.P. Yi, G.Y. Luo, Adv. Mater. Sci. Eng. 2017 (2017) 7059389.

    Article  Google Scholar 

  5. R.J. Wang, Q. Zhang, P.C. Zhang, X. Liu, S.N. Yuan, L.D. Ma, L.F. Ma, Mater. Res. Express 6 (2019) 066583.

    Article  Google Scholar 

  6. F. Yang, G.H. Wu, D.L. Sun, D.Z. Yang, H. Shao, Heat Treatment of Metals (2000) No. 3, 20–21, 48.

  7. S.J. Jiao, S. Yue, Iron and Steel 39 (2004) No. 3, 61–66.

    Google Scholar 

  8. C.L. Fan, H.Y. Fang, J. Tao, M. Li, J. Tsinghua Univ. (Sci. Technol.) 45 (2005) 159–162.

  9. Y. Choi, W.Y. Choo, D. Kwon, Scripta Mater. 45 (2001) 1401–1406.

    Article  Google Scholar 

  10. A.C. Fischer-Cripps, Nanoindentation, Springer, New York, USA, 2011.

    Book  Google Scholar 

  11. R. Saha, W.D. Nix, Acta Mater. 50 (2002) 23–28.

    Article  Google Scholar 

  12. G.M. Pharr, W.C. Oliver, MRS Bulletin 17 (1992) 28–33.

    Article  Google Scholar 

  13. T.Y. Tsui, W.C. Oliver, G.M. Pharr, J. Mater. Res. 11 (1996) 752–759.

    Article  Google Scholar 

  14. S. Suresh, A.E. Giannakopoulos, Acta Mater. 46 (1998) 5755–5767.

    Article  Google Scholar 

  15. L.N. Zhu, B.S. Xu, H.D. Wang, C.B. Wang, Mater. Charact. 61 (2010) 1359–1362.

    Article  Google Scholar 

  16. L.N. Zhu, B.S. Xu, H.D. Wang, C.B. Wang, Critical Reviews in Solid State Sciences 40 (2015) 77–89.

    Article  Google Scholar 

  17. C.J. Shang, X.M. Wang, Z.J. Zhou, X. Liang, C.L. Miao, X.L. He, Acta Metall. Sin. 44 (2008) 287–291.

    Google Scholar 

  18. J. Debehets, J. Tacq, A. Favache, P. Jacques, J.W. Seo, B. Verlinden, M. Seefeldt, Mater. Sci. Eng. A 616 (2014) 99–106.

    Article  Google Scholar 

  19. B.D. Cullity, Elements of X-ray diffraction, 2nd ed., Addison-Wesley Publishing Co., California, USA, 1978.

    Google Scholar 

  20. N.G. Ferreira, E. Abramot, E.J. Corat, V.J. Trava-Airoldi, Carbon 41 (2003) 1301–1308.

    Article  Google Scholar 

  21. Y.C. Liu, F. Sommer, E.J. Mittemeijer, Thermochim. Acta 413 (2004) 215–225.

    Article  Google Scholar 

  22. D.K. Palchaev, Zh.Kh. Murlieva, S.H. Gadzhimagomedov, M.E. Iskhakov, M.Kh. Rabadanov, I.M. Abdulagatov, Int. J. Thermophys. 36 (2015) 3186–3210.

    Article  Google Scholar 

  23. S.L. Fan, Metal material, Metallurgical Industry Press, Beijing, China, 1982.

    Google Scholar 

  24. B.W. Choi, D.H. Seo, J.I. Jang, Met. Mater. Int. 15 (2009) 373.

    Article  Google Scholar 

  25. Q. Furnémont, M. Kempf, P.J. Jacques, M. Göken, F. Delannay, Mater. Sci. Eng. A 328 (2002) 26–32.

    Article  Google Scholar 

  26. C.J. Shang, X. Liang, X.M. Wang, X.L. He, H. Liu, Mater. Sci. Forum 561–565 (2007) 65–68.

    Article  Google Scholar 

  27. M. Delincé, P.J. Jacques, T. Pardoen, Acta Mater. 54 (2006) 3395–3404.

    Article  Google Scholar 

  28. G.K. Williamson, R.E. Smallman, Philos. Magazine J. Theoretical Exp. Appl. Phys. 1 (1955) 34–46.

    Article  Google Scholar 

  29. G. Niu, Q.B. Tang, H.B. Wu, N. Gong, Y.J. Yin, D. Tang, Materialia 6 (2019) 100264.

    Article  Google Scholar 

  30. G. Niu, Q.B. Tang, H.S. Zurob, H.B. Wu, L.X. Xu, N. Gong, Mater. Sci. Eng. A 759 (2019) 1–10.

    Article  Google Scholar 

  31. Y. Lan, H.J. Klaar, W. Dahl, Metall. Mater. Trans. A 23 (1992) 537–544.

    Article  Google Scholar 

  32. S.F. Castro, J. Gallego, F.J.G. Landgraf, H.J. Kestenbach, Mater. Sci. Eng. 427 (2006) 301–305.

    Article  Google Scholar 

  33. H. Luo, H.Z. Su, G.B. Ying, C.F. Dong, X.G. Li, Appl. Surf. Sci. 425 (2017) 628–638.

    Article  Google Scholar 

  34. H.M. Tao, C.S. Zhou, Y.Y. Zheng, Y.J. Hong, J.Y. Zheng, L. Zhang, Corros. Sci. 154 (2019) 268–276.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Guangxi Science and Technology Major Project of China (Grant No. AA18242012-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-bin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, B., Wu, Hb., Niu, G. et al. Cold compression deformation method for reducing residual stress and uniformizing micro-property in ferrite steel. J. Iron Steel Res. Int. 29, 503–511 (2022). https://doi.org/10.1007/s42243-021-00563-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00563-9

Keywords

Navigation