Skip to main content
Log in

Effect of hydrogen addition on compression deformation behaviour of Ti–0.3Mo–0.8Ni alloy argon-arc welded joints

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of hydrogen addition on compression deformation behaviour of Ti–0.3Mo–0.8Ni alloy argon-arc welded joint has been investigated. Evolution mechanism of hydrogen-induced flow stress was discussed in detail. The results show that with increasing hydrogen content, the stretching and bending extent of fully lamellar microstructures including α lamellas and acicular hydride continued to increase, the morphology of dynamic recrystallization (DRX) grains tended to change from approximately equiaxed to large lamellar shape, and the quantity of DRX grains and recrystallization degree of grains increased obviously. A large number of dislocations concentrated in the vicinity of the hydride. Steady stress was decreased continuously with increasing hydrogen content, while peak stress of the hydrogenated 0.12 wt.% H weld zone was decreased to the minimum value and then increased slowly. A slight decrease in flow stress of the hydrogenated 0.05 wt.% H weld zone was caused by limited increase in the volume fraction of softer β phase. Hydrogen-induced DRX of α phase and improved dislocation movement by strong interaction between the hydride and dislocation directly resulted in a sharp drop in flow stress of the hydrogenated 0.12 and 0.21 wt.% H weld zone. Solute hydrogen also finitely contributed to a sharp drop in flow stress of the hydrogenated 0.12 and 0.21 wt.% H weld zone by promoted local softening, which induced continuous DRX and more movable dislocations to participate in slipping or climbing. The reinforcement effect and plastic deformation of the hydride and solution strengthening of β phase induced by solute hydrogen finally led to the increase in flow stress of the hydrogenated 0.21 wt.% H weld zone in its true strain range from 0 to 0.36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Karolczuk, H. Paul, Z. Szulc, K. Kluger, M. Najwer, G. Kwiatkowski, J. Mater. Eng. Perform. 27 (2018) 4571–4581.

    Article  Google Scholar 

  2. P. Sengupta, G. Sharma, G.K. Dey, J. Nucl. Mater. 457 (2015) 205–208.

    Article  Google Scholar 

  3. G.C. Li, X. Cheng, X.J. Tian, J. Iron Steel Res. Int. 25 (2018) 442–452.

    Article  Google Scholar 

  4. H.M. Tawancy, J. Mater. Eng. Perform. 26 (2017) 504–513.

    Article  Google Scholar 

  5. T.F. Song, X.S. Jiang, Z.Y. Shao, D.F. Mo, D.G. Zhu, M.H. Zhu, C.H. Young, Z.P. Luo, J. Iron Steel Res. Int. 24 (2017) 1023–1031.

    Article  Google Scholar 

  6. R.R. Chen, T.F. Ma, J.J. Guo, H.S. Ding, Y.O. Su, H.Z. Fu, Mater. Des. 108 (2016) 259–268.

    Article  Google Scholar 

  7. Y.Y. Zong, Y.C. Liang, Z.W. Yin, D.B. Shan, Int. J. Hydrogen Energy 37 (2012) 13631–13637.

    Article  Google Scholar 

  8. C.C. Shen, C.Y. Yu, T.P. Perng, Acta Mater. 57 (2009) 868–874.

    Article  Google Scholar 

  9. J.W. Zhao, H. Ding, H.L. Hou, Z.Q. Li, J. Alloy. Compd. 491 (2010) 673–678.

    Article  Google Scholar 

  10. M.Q. Li, W.F. Zhang, Mater. Sci. Eng. A 502 (2009) 32–37.

    Article  Google Scholar 

  11. S.M.J. Babu, B.P. Kashyap, N. Prabhu, R. Kapoor, R.N. Singh, J.K. Chakravartty, Mater. Sci. Eng. A 679 (2017) 75–86.

    Article  Google Scholar 

  12. Z.G. Sun, G.Q. Chen, Y.Q. Wang, W.L. Zhou, H.L. Hou, Mater. Sci. Eng. A 527 (2010) 1003–1007.

    Article  Google Scholar 

  13. L. Zhou, D. Liu, H.J. Liu, L.Z. Wu, Appl. Mech. Mater. 395–396 (2013) 243–250.

    Article  Google Scholar 

  14. S.P Liu, Z. Zhang, S.F. Xiao, Y.G. Chen, J. Alloy. Compd. 781 (2019) 1139–1149.

    Article  Google Scholar 

  15. Y. Zhang, S.Q. Zhang, C. Tao, Int. J. Hydrogen Energy 22 (1997) 125–129.

    Article  Google Scholar 

  16. X. Wang, L. Wang, L.S. Luo, H. Yan, X.Z. Li, R.R. Chen, Y.Q. Su, Y.J. Guo, H.Z. Fu, Mater. Des. 121 (2017) 335–344.

    Article  Google Scholar 

  17. J.Q. Lu, J.N. Qin, W.J. Lu, Y.F. Chen, D. Zhang, H.L. Hou, Int. J. Hydrogen Energy 34 (2009) 9266–9273.

    Article  Google Scholar 

  18. X.J. Lin, F.Y. Dong, Y. Zhang, X.G. Yuan, H.J. Huang, B.W. Zheng, L.Wang, X. Wang, L.S. Luo, Y.Q. Su, Y.J. Xu, B.S. Han, Int. J. Hydrogen Energy 44 (2019) 8641–8649.

    Article  Google Scholar 

  19. T.S. Balasubramanian, V. Balasubramanian, M.A. Muthu Manickam, Mater. Des. 32 (2011) 4509-4520.

    Article  Google Scholar 

  20. J.H. Xiong, S.K. Li, F.Y. Gao, J.X. Zhang, Mater. Sci. Eng. A 640 (2015) 419–423.

    Article  Google Scholar 

  21. O.N. Senkov, F.H. Froes, Int. J. Hydrogen Energy 24 (1999) 565–576.

    Article  Google Scholar 

  22. H.F. Zhang, Research on high temperature deformation behaviors and application of BTi-62421S alloys, North University of China, Taiyuan, China, 2011.

    Google Scholar 

  23. Q.M. Liu, Z.H. Zhang, S.F. Liu, H.Y. Yang, Adv. Eng. Mater. 20 (2018) 1700679.

    Article  Google Scholar 

  24. Z.H. Zhang, Q.M. Liu, S.F. Liu, H.Y. Yang, Rare Metal Mater. Eng. 48 (2019) 0104–0110.

    Google Scholar 

  25. J. Zhao, J. Zhong, F. Yan, F. Chai, M. Dargusch, J. Alloy. Compd. 710 (2017) 616–627.

    Article  Google Scholar 

  26. K. Zhang, H.B. Wu, D. Tang, J. Iron Steel Res. Int. 19 (2012) No. 5, 58–62.

    Article  Google Scholar 

  27. D.B. Shan, Y.Y. Zong, Y. Lv, B. Guo, Scripta Mater. 58 (2008) 449–452.

    Article  Google Scholar 

  28. Y.Y. Zong, D.S. Wen, W.C. Xu, D.M. Yang, D.B. Shan, Z.Y. Liu, Proced. Eng. 81 (2014) 1420–1426.

    Article  Google Scholar 

  29. X.M. Zhang, Y.Q. Zhao, W.D. Zeng, Mater. Sci. Technol. 27 (2011) 214–218.

    Article  Google Scholar 

  30. O.N. Senkov, M. Dubois, J.J. Jonas, Metall. Mater. Trans. A 27 (1996) 3963–3970.

    Article  Google Scholar 

  31. P.L. Martin, Mater. Sci. Eng. A 243 (1998) 25–31.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge that this work was supported by the China Postdoctoral Science Foundation (Grant No. 2020M672306) and National Natural Science Foundation of China (Grant Nos. 51874225 and 51671152). At the same time, the authors would also like to thank the researcher at China Aeronautical Manufacturing Technology Research Institute, Y.Q. Wang for hydrogen treatment and the researchers at Xi’an University of Architecture and Technology, M. Yang and X.S. Ding for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zh., Liu, Qm., Fu, L. et al. Effect of hydrogen addition on compression deformation behaviour of Ti–0.3Mo–0.8Ni alloy argon-arc welded joints. J. Iron Steel Res. Int. 28, 621–628 (2021). https://doi.org/10.1007/s42243-020-00509-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00509-7

Keywords

Navigation