Skip to main content
Log in

Effect of Al2O3 and MgO on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The crystallization behavior and melt structure of the CaO–SiO2–B2O3-based fluorine-free mold flux were investigated. The results show that the crystallization of the mold flux was first inhibited and then promoted with the increase in Al2O3 content from 4 to 12 wt.%. However, it was enhanced by MgO in the range of 2–10 wt.%. The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that Al2O3 worked as a network former in the mold flux melt when its content was in the range of 4–8 wt.%, whereas it worked as the network breaker to provide O2− when its content was in the range of 8–12 wt.%. In addition, the combined effects from the charge compensation by Mg2+ and the network broken by O2− led to the increase in some typical T–O–T (Al–O–Al, B–O–B, etc.) and simpler structural units (Q0(Si), B–O in the [BO2O], etc.) when the MgO content was in the range of 2–6 wt.%. The continuous increase in O2− provided by the addition of MgO from 6 to 10 wt.% further depolymerized the network of the melt and finally caused fast crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.H. Kim, I. Sohn, J. Am. Ceram. Soc. 102 (2019) 6575–6590.

    Article  Google Scholar 

  2. K.C. Mills, A.B. Fox, Z. Li, R.P. Thackray, Ironmak. Steelmak. 32 (2005) 26–34.

    Article  Google Scholar 

  3. H. Nakada, H. Fukuyama, K. Nagata, ISIJ Int. 46 (2006) 1660–1667.

    Article  Google Scholar 

  4. B. Mintz, D.N. Crowther, Int. Mater. Rev. 55 (2010) 168–196.

    Article  Google Scholar 

  5. L. Zhou, Z. Pan, W. Wang, J. Chen, L. Xue, T. Zhang, L. Zhang, Metall. Mater. Trans. B 51 (2020) 85–94.

    Article  Google Scholar 

  6. J.H. Park, D.J. Min, H.S. Song, Metall. Mater. Trans. B 33 (2002) 723–729.

    Article  Google Scholar 

  7. J. Gao, G. Wen, Q. Liu, W. Tan, P. Tang, J. Non-Cryst. Solids 409 (2015) 8–13.

    Google Scholar 

  8. K. Shimizu, A.W. Cramb, High Temp. Mater. Pr-Isr. 22 (2003) 237–246.

    Article  Google Scholar 

  9. E. Brandaleze, M. Valentini, L. Santini, E. Benavidez, J. Therm. Anal. Calorim. 133 (2018) 271–277.

    Article  Google Scholar 

  10. H. Nakada, K. Nagata, ISIJ Int. 46 (2006) 441–449.

    Article  Google Scholar 

  11. G. Wen, S. Sridhar, P. Tang, X. Qi, Y. Liu, ISIJ Int. 47 (2007) 1117–1125.

    Article  Google Scholar 

  12. Q. Wang, Y.J. Lu, S.P. He, K.C. Mills, Z.S. Li, Ironmak. Steelmak. 38 (2011) 297–301.

    Article  Google Scholar 

  13. E. Benavidez, L. Santini, M. Valentini, E. Brandaleze, Procedia Mater. Sci. 1 (2012) 389–396.

    Article  Google Scholar 

  14. S.Y. Choi, D.H. Lee, D.W. Shin, S.Y. Choi, J.W. Cho, J.M. Park, J. Non-Cryst. Solids 345–346 (2004) 157–160.

    Google Scholar 

  15. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai, Y. Kashiwaya, Metall. Mater. Trans. B 47 (2016) 2447–2458.

    Article  Google Scholar 

  16. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai, Y. Kashiwaya, Metall. Mater. Trans. B 49 (2018) 3097–3106.

    Article  Google Scholar 

  17. A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, J. Gisby, ISIJ Int. 45 (2005) 1051–1058.

    Article  Google Scholar 

  18. L. Zhou, W. Wang, B. Lu, G. Wen, J. Yang, Met. Mater. Int. 21 (2015) 126–133.

    Article  Google Scholar 

  19. L. Zhou, W. Wang, K. Zhou, ISIJ Int. 55 (2015) 1916–1924.

    Article  Google Scholar 

  20. J.H. Park, D.J. Min, H.S. Song, Metall. Mater. Trans. B 35 (2004) 269–275.

    Article  Google Scholar 

  21. T. Tanaka, T. Kitamura, I.A. Back, ISIJ Int. 46 (2006) 400–406.

    Article  Google Scholar 

  22. M. Chen, D. Zhang, M. Kou, B. Zhao, ISIJ Int. 54 (2014) 2025–2030.

    Article  Google Scholar 

  23. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 43 (2012) 354–362.

    Article  Google Scholar 

  24. W. Wang, S. Dai, L. Zhou, J. Zhang, W. Tian, J. Xu, Ceram. Int. 46 (2020) 3631–3636.

    Article  Google Scholar 

  25. Y. Sun, J. Liao, K. Zheng, X. Wang, Z. Zhang, JOM 66 (2014) 2168–2175.

    Article  Google Scholar 

  26. W.L. Wang, E.Z. Gao, L.J. Zhou, L. Zhang, H. Li, J. Iron Steel Res. Int. 26 (2019) 355–364.

    Article  Google Scholar 

  27. S. Takahashi, D.R. Neuville, H. Takebe, J. Non-Cryst. Solids 411 (2015) 5–12.

    Google Scholar 

  28. E.I. Kamitsos, G.D. Chryssikos, M.A. Karakassides, J. Phys. Chem. 91 (1987) 1067–1073.

    Article  Google Scholar 

  29. L. Zhang, W. Wang, I. Sohn, J. Non-Cryst. Solids 511 (2019) 41–49.

    Google Scholar 

  30. R. Ciceo-Lucacel, I. Ardelean, J. Non-Cryst. Solids 353 (2007) 2020–2024.

    Google Scholar 

  31. I. Ardelean, S. Cora, J. Mater Sci. 19 (2008) 584–588.

    Google Scholar 

  32. H. Doweidar, Y.B. Saddeek, J. Non-Cryst. Solids 355 (2009) 348–354.

    Google Scholar 

  33. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, J. Phys. Chem. 91 (1987) 5807–5813.

    Article  Google Scholar 

  34. E.T. Yew, W.M. Hua, P.S. Wong, N.A.M. Jan, Z. Ibrahim, R. Hussin, Adv. Mater. Res. 501 (2012) 51–55.

    Article  Google Scholar 

  35. P. McMillan, Am. Mineral. 69 (1984) 622–644.

    Google Scholar 

  36. J.D. Frantza, B.O. Mysen, Chem. Geol. 121 (1995) 155–176.

    Article  Google Scholar 

  37. B.O. Mysen, J.D. Frantz, Am. Miner. 78 (1993) 699–709.

    Google Scholar 

  38. Y. Wu, G. Jiang, J. You, H. Hou, H. Chen, Acta Phys. Sin. 54 (2005) 961–966.

    Google Scholar 

  39. C.M. Yoon, Y. Park, D.J. Min, Metall. Mater. Trans. B 49 (2018) 2322–2331.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51874363, U1760202), Natural Science Foundation of Hunan Province (2019JJ40345) and Hunan Scientific Technology Projects (2018RS3022, 2018WK2051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-jun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Jy., Wang, Wl., Zhou, Lj. et al. Effect of Al2O3 and MgO on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux. J. Iron Steel Res. Int. 28, 552–562 (2021). https://doi.org/10.1007/s42243-020-00439-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00439-4

Keywords

Navigation