Skip to main content
Log in

Objective Omega vortex identification method

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A new vortex identification method (Liu et al. 2016) was proposed to represent the rotation relative strength and capture and visualize the vortices in our previous study. The basic idea of the Ω method is that a ratio of the vorticity squared over the summation of the vorticity squared and the deformation squared should be used to measure the relative rotation strength. However, the vorticity tensor norm is not objective. Thus, a moving observer will observe different vortex structures in a moving reference frame, which will make people confused with the real vortex structures. In the present study, by the definitions of the net spin tensor and net vorticity vector, an objective omega vortex identification method is presented and the examples are presented to verify the vortex structures will still retain in a moving reference frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epps B. P., Alvarado P. V., Youcef–Toumi K., Techet A. H. Swimming Performance of a Biomimetic Compliant Fish–like Robot [J]. Experiments in fluids, 2009, 47(6):927–939

    Article  Google Scholar 

  2. Epps B. P. Review of vortex identification methods [C]. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, 2017.

    Google Scholar 

  3. Robinson S. K. A review of vortex structures and associated coherent motions in turbulent boundary layers. In Structure of Turbulence and Drag Reduction [M]. Berlin, Germany: Springer, 1990, 23–50.

    Chapter  Google Scholar 

  4. Robinson S. K., Kline S. J., Spalart P. R. A review of quasi–coherent structures in a numerically simulated turbulent boundary layer [R]. NASA Technical Memorandum, 1989, 102191.

    Google Scholar 

  5. Liu C., Cai X. New theory on turbulence generation and structure—DNS and experiment [J]. Science China Physics, Mechanics & Astronomy, 2017, 60(8):084731

    Article  Google Scholar 

  6. Hunt J. C. R., Wray A. A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program. Center for Turbulence Research, 1988, 193–208.

    Google Scholar 

  7. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three–dimensional flow fields [J]. Physics of Fluids, 1990, 2(5):765–777

    Article  MathSciNet  Google Scholar 

  8. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  Google Scholar 

  9. Zhou J., Adrian, R.J., Balachandar S., & Kendall T.M. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387(5):353–396

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu C., Wang Y., Yang Y., et al. New omega vortex identification method [J]. Science China Physics, Mechanics and Astronomy, 2016, 59{(sn8}):684711

    Article  Google Scholar 

  11. Dong X., Wang Y., Chen X., et al. Determination of epsilon for Omega vortex identification method [J]. Journal of Hydrodynamics, 2018, 30{(sn4}):541–548

    Article  Google Scholar 

  12. Zhang Y., Liu K., Xian H., et al. A review of methods for vortex identification in hydroturbines [J]. Renewable and Sustainable Energy Reviews, 2018}, 81}: 1269–1

    Article  Google Scholar 

  13. Zhang Y., Qiu X., Chen P., et al. A selected review of vortex identification methods with applications [J]. Journal of Hydrodynamics, 2018, 30(5):767–779

    Article  Google Scholar 

  14. Zhang Y., Liu K., Li J., et al. Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method [J]. Journal of Hydrodynamics, 2018, 30(3):463–469

    Article  Google Scholar 

  15. Kareem W.A. Anisotropic complex diffusion filtering for comparison of the vortex identification methods in homogeneous turbulence [J]. International Journal of Mechanical Sciences, 2017, 134: 291–305.

    Article  Google Scholar 

  16. Liu C., Gao Y., Dong X. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, https://doi.org/10.1007/s42241–019–0022–4.

    Google Scholar 

  17. Martins R. S., Pereira A. S., Mompean G., Thais L., Thompson R.L. An objective perspective for classic flow classification criteria[J]. Comptes Rendus Mecanique, 2016, 344(1):52–59

    Article  Google Scholar 

  18. Drouot R. Définition d’un transport associé à un modèle de fluide du deuxième ordre. Comparaison de diverses lois de comportement [J]. Comptes rendus de l’Académie des Sciences, Série A, 1976, 282: 923–926.

    MATH  Google Scholar 

  19. Wedgewood L. E. An objective rotation tensor applied to non–Newtonian fluid mechanics [J]. Rheologica Acta, 1999, 38(2): 91–99.

    Article  Google Scholar 

  20. Haller G., Hadjighasem A., Farazmand M., Huhn F. Defining coherent vortices objectively from the vorticity [J]. Journal of Fluid Mechanics, 2016, 795: 136–173.

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang Y., Liu C. DNS study on bursting and intermittency in late boundary layer transition [J]. Science China Physics, Mechanics & Astronomy, 2017, 60(11):114712

    Article  Google Scholar 

  22. Golub G.H., Van Loan C.F. Matrix computations, 4th Edition [M]. Baltimore, Maryland: The Johns Hopkins University Press, 2013.

    Google Scholar 

  23. Gallay T., Maekawa Y. Three–Dimensional Stability of Burgers Vortices [J]. Communications in Mathematical Physics, 2010, 302(2):477–511

  24. Haller G. An objective definition of a vortex [J]. Journal of Fluid Mechanics, 2005, 525: 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dong X., Yan Y., Yang Y., et al. Spectrum study on unsteadiness of shock wave–vortex ring interaction [J]. Physics of Fluids, 2018, 30: 056101.

    Article  Google Scholar 

  26. Gan Y., Liu J., Zhao N., et al. A numerical study on a Cartesian–based body–fitted adaptive grid method [J]. International Journal of Computational Fluid Dynamics, 2018, 32(4–5): 186–202.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos.18KJA110001), the Visiting Scholar Scholarship of the China Scholarship Council (Grant No. 201808320079), and the China Post-Doctoral Science Foundation (Grant No. 2017M610876). This work is partly accomplished by using code DNSUTA and LESUTA developed by Dr. Chaoqun Liu at the University of Texas at Arlington, and by using code CABA developed by Dr. Ning Zhao at Nanjing University of Aeronautics and Astronautics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Additional information

Project supported by the National Nature Science Foundation of China (Grant Nos. 91530325, 11702159).

Biography: Jian-ming Liu (1977-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jm., Gao, Ys., Wang, Yq. et al. Objective Omega vortex identification method. J Hydrodyn 31, 455–463 (2019). https://doi.org/10.1007/s42241-019-0028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0028-y

Key words

Navigation