Skip to main content
Log in

Ambient temperature complete oxidation of carbon monoxide using hopcalite catalysts for fire escape mask applications

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) is one of the most poisonous gases present in the atmosphere. It also called the silent killer of twenty-first century. CO is produced into the environment by incomplete combustion of carbon containing compounds. It causes lots of people die every year including the firefighters. The main aim of this work to find out the literature study of standard respiratory escape masks for ambient temperature CO oxidation purposes. The research under concern is applicable for developing respiratory protection systems for military, mining, and space devices. There are many catalysts which are active for this process under different conditions. Among these catalysts, the hopcalite (CuMnOx) is one of the best-known catalysts for low-temperature CO oxidation. It is a low-cost, easily available, and highly stable catalyst. The hopcalite catalyst is active for a longer time and would be tolerant of moisture and impurities in reacting gases. The catalyst surface and reacting gases forever play a key role in catalytic reactions. Hopcalite is an ideal catalyst for use in next-generation respiratory protection devices. Although there are numerous research papers present on this topic until now no one review are present for demanding this issue. So there is a space in this area; it has been made an attempt to seal this hole by this review.

Summary

• To develop a standard fire escape masks for protection of respiratory systems in military, mining, and firefighting, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Environmental Protection Agency United States (2000) Air quality criteria for carbon monoxide. Office of Research and Development, Washington, DC 20460, EPA 600/P-99/001F

  2. Dey S, Dhal GC, Mohan D, Prasad R (2017) Effect of preparation conditions on the catalytic activity of CuMnOx catalysts for CO oxidation. Bull Chem React Eng Catal 12(3):1–15

    Article  Google Scholar 

  3. Singh S, Prasad R (2016) Physico-chemical analysis and study of different parameters of hopcalite catalyst for CO oxidation at ambient temperature. Int J Sci Eng Res 7(4):846–855

    Google Scholar 

  4. Chand-Meena, M (2014) Accidental death due to carbon monoxide: Case report. International Journal of Medical Toxicology and Forensic Medicine 4(4):158–161

  5. Kumar GM, Sampath S, Jeena VS, Anjali R (2008) Carbon monoxide pollution levels at environmentally different sites. J Indian Geophys Union 12(1):31–40

    Google Scholar 

  6. Levy RJ and Faap ED (2015) Carbon monoxide pollution and neurodevelopment: a public health concern. Neurotoxicol Teratol 49:31–40

  7. Badr O, Probert SD (1994) Carbon monoxide concentration in the earth’s atmosphere. Appl Energy 49:99–143

    Article  CAS  Google Scholar 

  8. Dey S, Dhal GC, Mohan D, Prasad R (2017) Kinetics of catalytic oxidation of carbon monoxide over CuMnAgOx catalyst. Mater Discov 8:18–25

    Article  Google Scholar 

  9. Dey S, Dhal GC, Prasad R, Mohan D (2016) The effect of doping on the catalytic activity of CuMnOx catalyst for CO oxidation. IOSR Journal of Environmental Science, Toxicology and Food Technology 10(11):86–94

    CAS  Google Scholar 

  10. Hoskins JA Carbon monoxide: the unnoticed poison of the 21st century. Indoor Built Environ 8:154–162

  11. Dey S, Dhal GC, Mohan D, Prasad R (2018) Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature. Polyhedron 155:102–113

    Article  CAS  Google Scholar 

  12. Dey S, Dhal GC, Mohan D, Prasad R (2017) Characterization and activity of CuMnOx/γ-Al2O3 catalyst for oxidation of carbon monoxide. Mater Discov 8:26–34

    Article  Google Scholar 

  13. Karanjikar MR (2005) Low temperature oxidation of carbon monoxide using microfibrous entrapped catalysts for respiratory escape mask application. Ph.D. Thesis, Auburn University, Auburn, Alabama

  14. Chauhan S (2010) Noble metal catalysts for monolithic converters. J Chem Pharm Res 4:602–611

    Google Scholar 

  15. Dey S, Dhal GC, Mohan D, Prasad R (2018) The choice of precursors in the synthesizing of CuMnOx catalysts for maximizing CO oxidation. Int J Ind Chem 9:199–214

    Article  CAS  Google Scholar 

  16. Benjamin BFF, Alphonse P (2016) Co-Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature. Appl Catal B Environ 180:715–724

    Article  CAS  Google Scholar 

  17. Dey S, Dhal GC, Prasad R, Mohan D (2016) Effect of nitrate metal (Ce, Cu, Mn and Co) precursors for the total oxidation of carbon monoxide. Resource-Efficient Technologies 3:293–302

    Article  Google Scholar 

  18. Chen SY, Tang W, He J, Miao R, Lin HJ, Song W, Wang S, Gao PX, Suib SL (2019) Copper manganese oxide enhanced nanoarray-based monolithic catalysts for hydrocarbon oxidation. J Mater Chem A. https://doi.org/10.1039/c8ta06459h

  19. Cholakov GS (2010) Control of exhaust emissions from internal combustion engine vehicles. Pollution Control Technologies 3:1–8

    Google Scholar 

  20. Dey S, Dhal GC, Mohan D, Prasad R, Gupta RN (2018) Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide. Appl Surf Sci 441:303–316

    Article  CAS  Google Scholar 

  21. Elmhamdi A, Pascual L, Nahdi K, Martínez-Arias A (2017) Structure/redox/activity relationships in CeO2/CuMn2O4 CO-PROX catalysts. Appl Catal B Environ 217:1–11

    Article  CAS  Google Scholar 

  22. Faiz A, Weaver CS, Walsh MP (1996) Air pollution from motor vehicles, standards and technologies for controlling emissions. The World Bank Reconstruction and Development, Washington DC

    Book  Google Scholar 

  23. Hasegawa Y, Maki R, Sano M, Miyake T (2009) Preferential oxidation of CO on copper-containing manganese oxides. Appl Catal A Gen 371:67–72

    Article  CAS  Google Scholar 

  24. Hoskins WM, Bray WC (1926) The catalytic oxidation of carbon monoxide. II. The adsorption of carbon dioxide, carbon monoxide and oxygen by the catalysts, manganese dioxide, cupric oxide and mixtures of these oxides. J Am Chem Soc 48(6):1454–1474

    Article  CAS  Google Scholar 

  25. Jones C, Cole KJ, Taylor SH, Crudace MJ, Hutchings GJ (2009) Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: effect of calcination on activity. J Mol Catal A Chem 305:121–124

    Article  CAS  Google Scholar 

  26. Li Z, Wang H, Wu X, Ye Q, Xu X, Li B, Wang F (2017) Novel synthesis and shape-dependent catalytic performance of Cu–Mn oxides for CO oxidation. Appl Surf Sci 403:335–341

    Article  CAS  Google Scholar 

  27. Lee J, Kim H, Lee H, Jang S, Chang JH (2016) Highly efficient elimination of carbon monoxide with binary copper-manganese oxide contained ordered nanoporous silicas. Nanoscale Res Lett 11(2–6)

  28. Njagi EC, Chen C, Genuino H, Galindo H, Huang H, Suib SL (2010) Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method. Appl Catal A Gen 99:103–110

    Article  CAS  Google Scholar 

  29. Cai L, Hu Z, Branton P, Li W (2014) The effect of doping transition metal oxides on copper manganese oxides for the catalytic oxidation of CO. Chin J Catal 35:159–167

    Article  CAS  Google Scholar 

  30. Jones CD (2006) The ambient temperature oxidation of carbon monoxide by copper-manganese oxide based catalysts. Ph.D. Thesis, Cardiff Catalysis Institute, Cardiff University, UK

  31. Dey S, Dhal GC, Prasad R, Mohan D (2017) Effects of doping on the performance of CuMnOx catalyst for CO oxidation. Bulletin of Chemical Reaction Engineering & Catalysis 12(3):1–14

    Article  Google Scholar 

  32. Houshmand D, Roozbehani B, Badakhshan A (2013) Thermal and catalytic degradation of polystyrene with a novel catalyst. Int J Sci Emerg Technol 5:234–238

    Google Scholar 

  33. Carmichael J (2014) Transition-metal-doped manganese oxide hollow nanospheres: synthesis and catalytic activity. Chemistry Honors Papers 12:1–76

    Google Scholar 

  34. Gao J, Jia C, Zhang L, Wang H, Yang Y, Hung S, Hsu Y, Liu B (2016) Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. J Catal 341:82–90

    Article  CAS  Google Scholar 

  35. Portehault D, Cassaignon S, Nassif N, Baudrin E, Jolivet J (2008) A core–corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew Chem 47:6441–6444

    Article  CAS  Google Scholar 

  36. Zhang X, Tian P, Tu W, Zhang Z, Xu J, Han Y (2018) Tuning the dynamic interfacial structure of copper–ceria catalysts by indium oxide during CO oxidation. ACS Catal 8(6):5261–5275

    Article  CAS  Google Scholar 

  37. Qian K, Qian Z, Hua Q, Jiang Z, Huang W (2013) Structure activity relationship of CuO/MnO2 catalysts in CO oxidation. Appl Surf Sci 273:357–363

    Article  CAS  Google Scholar 

  38. Nisar J, Ali M, Awan IA (2011) Catalytic thermal decomposition of polyethylene by pyrolysis gas chromatography. J Chil Chem Soc 56:653–654

    Article  CAS  Google Scholar 

  39. Dey S, Dhal GC, Mohan D, Prasad R (2018) Effect of various metal oxides phases present in CuMnOx catalyst for selective CO oxidation. Mater Discov 12:63–71

    Article  Google Scholar 

  40. Wegner K, Medicus M, Schade E, Grothe J (2019) Tailoring catalytic properties of copper manganese oxide nanoparticles (Hopcalites-2G) via flame spray pyrolysis. ChemCatChem. https://doi.org/10.1002/cctc.201800639

  41. Guo Y, Li C, Lu S, Zhao C (2016) Low temperature CO catalytic oxidation and kinetic performances of KOH–hopcalite in the presence of CO2. RSC Adv 6:7181–7188

    Article  CAS  Google Scholar 

  42. Kireev AS, Mukhin VM, Kireev SG, Klushin VN, Tkachenko SN (2009) The preparation and properties of modified hopcalite catalyst. Russ J Appl Chem 82:169–171

    Article  CAS  Google Scholar 

  43. Dey S, Dhal GC, Mohan D, Prasad R (2018) Low-temperature complete oxidation of CO over various manganese oxide catalysts. Atmos Pollut Res 9:755–763

    Article  CAS  Google Scholar 

  44. Singh P, Prasad R (2014) Catalytic abatement of cold-start vehicular CO emissions. Catal Ind 6:122–127

    Article  Google Scholar 

  45. Libardi SH, Skibsted LH, Cardoso DR (2014) Oxidation of carbon monoxide by perferryl myoglobin. J Agric Food Chem 62(8):1950–1955

    Article  CAS  Google Scholar 

  46. Prockop LD, Chichkova RI (2007) Carbon monoxide intoxication: an updated review. J Neurol Sci 262(1–2):122–130

    Article  CAS  Google Scholar 

  47. Prasad GK, Singh B, Vijayaraghavan R (2008) Respiratory protection against chemical and biological warfare agents. Def Sci J 58(5):686–697

    Article  CAS  Google Scholar 

  48. Christopher TC (1990) US chemical and biological defense respirators: an illustrated history. Schiffer Publications, USA

    Google Scholar 

  49. Roder MM (1990) A guide for evaluating the performance of chemical protective clothing (CPC). Division of Safety Research. United States: Department of Health and Human Services, Public Health Service, Morgantown

  50. Ehntholt DJ, Bodek I, Valentine JR, Schwope AD, Royer MD, Frank U, Nielsen A (1989) A new method for sampling toxic organophosphates and its use in evaluating chemical protective glove materials. In Proceedings of 3rd International Symposium on Protection Against Chemical Warfare Agents, Umea, Sweden, 11–16 June

  51. Samuel B (1874) Permitting respiration in places where the atmosphere is charged with noxious gases, or vapours, smoke, or other impurities. US Patent 1(48):868

    Google Scholar 

  52. Barker ME (1926) Gas mask development. Chemical Warfare 12(7):11–15

    Google Scholar 

  53. Dubinin MM (1985) Generalisation of the theory of volume filling of micropores to non-homogenous microporous structure. Carbon 23:373

    Article  CAS  Google Scholar 

  54. Rengasamy A, Ziqing Z, BerryAnn R (2004) Respiratory protection against bioaerosols: literature review and research needs. Am J Infect Control 32:345–354

    Article  Google Scholar 

  55. Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1996) Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by co-precipitation: effect of ageing on catalyst performance. Catal Lett 42:21–24

    Article  CAS  Google Scholar 

  56. Hutchings GJ, Mirzaei AA, Joynerb RW, Siddiqui MRH, Taylor SH (1998) Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Appl Catal A Gen 166:143–152

    Article  CAS  Google Scholar 

  57. Taylor SH, Hutchings GJ, Mirzaei AA (1999) Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chem Commun:1373–1374

  58. Mirzaei AA, Shaterian RH, Habibi M, Hutchings GJ, Taylor SH (2003) Characterization of copper-manganese oxide catalysts: effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Appl Catal A Gen 253:499–508

    Article  CAS  Google Scholar 

  59. Solsona B, Hutchings GJ, Garcia T, Taylor SH (2004) Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New J Chem 28:708–711

    Article  CAS  Google Scholar 

  60. Paldey S, Gedevanishvili S, Zhang W, Rasouli F (2005) Evaluation of a spinel based pigment systems as a CO oxidation catalyst. Appl Catal B Environ 56:241–250

    Article  CAS  Google Scholar 

  61. Li M, Wang D, Shi X, Zhang Z, Dong T (2007) Kinetics of catalytic oxidation of CO over copper-manganese oxide catalyst. Sep Purif Technol 57:147–151

    Article  CAS  Google Scholar 

  62. Jones C, Taylor SH, Burrows A, Crudace MJ, Kielyb CJ, Hutchings GJ (2008) Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chem Commun 1707:1–7

    Google Scholar 

  63. Cole KJ, Carley AF, Crudace MJ, Clarke M, Taylor SH, Hutchings GJ (2010) Copper manganese oxide catalysts modified by gold deposition: the influence on activity for ambient temperature carbon monoxide oxidation. Catal Lett 138:143–147

    Article  CAS  Google Scholar 

  64. Shi L, Hu Z, Deng G, Li W (2015) Carbon monoxide oxidation on copper manganese oxides prepared by selective etching with ammonia. Chin J Catal 36:1920–1927

    Article  CAS  Google Scholar 

  65. Cong H, Yu S (2009) Shape control of cobalt carbonate particles by a hydrothermal process in a mixed solvent: an efficient precursor to nanoporous cobalt oxide architectures and their sensing property. Cryst Growth Des 9:210–217

    Article  CAS  Google Scholar 

  66. Irawan RB, Purwanto P, Hadiyanto H (2015) Optimum design of manganese-coated copper catalytic converter to reduce carbon monoxide emissions on gasoline motors. International Conference on Tropical and Coastal Region Eco-Development 23:86–92

    Google Scholar 

  67. Tang ZR, Kondrat SA, Dickinson C, Bartley JK, Carley AF, Taylor SH, Davies TE, Allix M, Rosseinsky MJ, Claridge JB, Xu Z, Romani S, Crudace MJ, Hutching GJ (2011) Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catal Sci Technol 1:740–746

    Article  CAS  Google Scholar 

  68. Cai L, Guo Y, Lu A, Branton P, Li W (2012) The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation. J Mol Catal A Chem 360:35–41

    Article  CAS  Google Scholar 

  69. Rani R, Prasad R (2014) Studies of carbon monoxide oxidation at ambient conditions. Recent Res Sci Technol 6:89–92

    CAS  Google Scholar 

  70. Hoshyar N, Irankhak A, Jafari M (2015) Copper catalysts supported on CeMnO2 for CO oxidation in hydrogen rich gas streams. Iranian Journal of Chemical Engineering 12:3–14

    Google Scholar 

  71. Liu Y, Guo Y, Peng H, Xu X, Wu Y, Peng C, Zhang N, Wang X (2016) Modifying hopcalite catalyst by SnO2 addition: an effective way to improve its moisture tolerance and activity for low temperature CO oxidation. Appl Catal A Gen 525:204–214

    Article  CAS  Google Scholar 

  72. Mirzaei AA, Shaterian HR, Joyner RW, Stockenhuber M, Taylor SH, Hutchings GJ (2013) Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: effect of residual Na+ acting as catalyst poison. Catal Commun 4:17–20

    Article  Google Scholar 

  73. Njagi EC, Genuino HC, Kingondu CK, Chen C, Horvath D, Suib SL (2011) Preferential oxidation of CO in H2 rich feeds over mesoporous copper manganese oxide synthesized by a redox method. Int J Hydrog Energy 36:6768–6779

    Article  CAS  Google Scholar 

  74. Kramer M, Schmidt T, Stowe K, Maier WF (2006) Structural and catalytic aspects of sol–gel derived copper manganese oxides as low-temperature CO oxidation catalyst. Appl Catal A Gen 302:257–263

    Article  CAS  Google Scholar 

  75. Zaki MI, Hasan MA, Pasupulety L (2009) Influence of CuOx additives on CO oxidation activity and related surface and bulk behaviors of Mn2O3, Cr2O3 and WO3 catalysts. Appl Catal A Gen 198:247–259

    Article  Google Scholar 

  76. Kondrat SA, Davies TE, Zu Z, Boldrin P, Bartley JK, Carley AF, Taylor SH, Rosseinsky MJ, Hutchings GJ (2011) The effect of heat treatment on phase formation of copper manganese oxide: influence on catalytic activity for ambient temperature carbon monoxide oxidation. J Catal 281:279–289

    Article  CAS  Google Scholar 

  77. Clarke TJ, Davies TE, Kondrat SA, Taylor SH (2015) Mechano-chemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide. Appl Catal B Environ 165:222–231

    Article  CAS  Google Scholar 

  78. Biemelt T, Wegner K, Trichert J, Lohe MR, Martin J, Grothe J, Kaskel S (2015) Hopcalite nanoparticle catalysts with high water vapour stability for catalytic oxidation of carbon monoxide. Appl Catal B Environ 21:1–26

    Google Scholar 

  79. Fuzhen Z, Miao G, Guangying Z, Jinlin L (2015) Effect of the loading content of CuO on the activity and structure of CuO/Ce-Mn-O catalysts for CO oxidation. J Rare Earths 330:604–610

    Google Scholar 

  80. Xia GG, Yin YG, Willis WS, Wang JY, Suib SL (1999) Efficient stable catalysts for low temperature carbon monoxide oxidation. J Catal 185(1):91–105

    Article  CAS  Google Scholar 

  81. Dey S, Dhal GC, Mohan D, Prasad R (2017) Study of hopcalite (CuMnOx) catalysts prepared through a novel route for the oxidation of carbon monoxide at low temperature. Bulletin of Chemical Reaction Engineering & Catalysis 12(3):393–407

    Article  CAS  Google Scholar 

  82. Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propane oxidation. ACS Chem Rev 107(6):2709–2724

    Article  CAS  Google Scholar 

  83. Comotti M, Li W, Spliethoff B, Schuth F (2006) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128(3):917–924

    Article  CAS  Google Scholar 

  84. Reina T, Ivanova S, Centeno MA, Odriozola JSA (2013) Low-temperature CO oxidation on multi-component gold based catalysts. Front Chem 1(12):1–9

    CAS  Google Scholar 

  85. Kropp T, Lu Z, Li Z, Chin YC, Mavrikakis M (2019) Anionic single-atom catalysts for CO oxidation: support-independent activity at low temperatures. ACS Catal 9(2):1595–1604

    Article  CAS  Google Scholar 

  86. Mohajeri A, Hassani N (2019) The interplay between structural perfectness and CO oxidation catalysis on aluminum, phosphorous and silicon complexes of corroles. Phys Chem Chem Phys 21:7661–7674

  87. Romero-Sarria F, Plata JJ, Laguna OH, Marquez AM (2014) Surface oxygen vacancies in gold based catalysts for CO oxidation. RSC Adv 4:13145–13152

    Article  CAS  Google Scholar 

  88. Liu Z, Gong XQ, Kohanoff J, Sanchez CG (2003) Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO. Phys Rev Lett 91(26):2661021–2661024

    Article  CAS  Google Scholar 

  89. Dey S, Dhal GC, Mohan D, Prasad R (2017) Copper based mixed oxide catalysts (CuMnCe, CuMnCo and CuCeZr) for the oxidation of CO at low temperature. Mater Discov 10:1–14

    Article  CAS  Google Scholar 

  90. Kam EKT, Hughes R (2001) The effect of catalyst fouling on the performance of adiabatic packed-bed reactors—a theoretical study. Chem Eng J 18:93–102

    Article  Google Scholar 

  91. Veprek S, Cocke DL, Kehl S, Oswald HR (1986) Mechanism of the deactivation of hopcalite catalysts studied by XPS, ES and other techniques. J Catal 100:250–263

    Article  CAS  Google Scholar 

  92. Dey S, Dhal GC, Mohan D, Prasad R (2019) Synthesis of the silver promoted CuMnOx catalyst for ambient temperature oxidation of carbon monoxides. Journal of Science: Advanced Materials and Devices 4:47–56

Download references

Acknowledgments

The authors would like to express his gratitude to the Department of Civil Engineering and Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, India, for their guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashish Dey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Dhal, G.C., Mohan, D. et al. Ambient temperature complete oxidation of carbon monoxide using hopcalite catalysts for fire escape mask applications. Adv Compos Hybrid Mater 2, 501–519 (2019). https://doi.org/10.1007/s42114-019-00108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00108-5

Keywords

Navigation