Skip to main content
Log in

Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The composite structure of Co beads (200–300 nm) threaded by carbon nanotubes has been synthesized through a facile solvothermal method followed by a carbon reduction process. A carbon layer of ca. 5 nm was coated on the surface of Co beads to form a core-shell structure (CNTs/Co@C), in favor of the anti-oxidation of Co nanoparticles. The CNTs/Co@C hybrid showed a saturation magnetization (M s) of 82.5 emu g−1 and a larger H c value of 258.8 Oe than bulk Co (ca. 10 Oe). Served as an EM wave absorption material, the epoxy resin composites consisting of 60 wt% and 40 wt% CNTs/Co@C hybrid exhibited effective EM absorption (RL < − 10 dB) over the frequency ranges of 1.5–15 and 1.6–20 GHz with the matching thicknesses of 1.0–7.5 and 1.0–10.0 mm, respectively. The superior EM absorption performances of CNTs/Co@C hybrid containing strong absorption, wide frequency range, thin thickness, and light weight are mainly attributed to the synergy of magnetic loss from Co beads and dielectric loss from carbon nanotubes, as well as remarkable impedance matching.

The composite structure of Co beads threaded by carbon nanotubes synthesized through a facile solvothermal method followed by a carbon reduction process exhibit superior electromagnetic wave absorption properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang F, Liu J, Kong J, Zhang Z, Wang X, Itoh M, Machida K (2011) Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J Mater Chem 21:4314–4320

    Article  Google Scholar 

  2. Lu M, Cao W, Shi H, Fang X, Yang J, Hou Z, Jin H, Wang W, Yuan J, Cao M (2014) Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A 2:10540–10547

    Article  Google Scholar 

  3. Liang C, Liu C, Wang H, Wu L, Jiang Z, Xu Y, Shen B, Wang Z (2014) SiC–Fe3O4 dielectric–magnetic hybrid nanowires:controllable fabrication, characterization and electromagnetic wave absorption. J Mater Chem A 2:16397–16402

    Article  Google Scholar 

  4. Zhao B, Zhao W, Shao G, Fan B, Zhang R (2015) Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 7:12951–12960

    Article  Google Scholar 

  5. Liu X, Chen Y, Cui X, Zeng M, Yu R, Wang G (2015) Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J Mater Chem A 3:12197–12204

    Article  Google Scholar 

  6. Liu J, Cao M, Luo Q, Shi H, Wang W, Yuan J (2016) Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl Mater Interfaces 8:22615–22622

  7. Qiang R, Du Y, Zhao H, Wang Y, Tian C, Li Z, Han X, Xu P (2015) Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J Mater Chem A 3:13426–13434

  8. Lü Y, Wang Y, Li H, Lin Y, Jiang Z, Xie Z, Kuang Q, Zheng L (2015) MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl Mater Interfaces 7:13604–13611

  9. Feng J, Pu F, Li Z, Li X, Hu X, Bai J (2016) Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104:214–225

  10. Wang L, Jia X, Li Y, Yang F, Zhang L, Liu L, Ren X, Yang H (2014) Synthesis and microwave absorption property offlexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J Mater Chem A 2:14940–14946

  11. Tsonos C, Soin N, Tomara G, Yang B, Psarras GC, Kanapitsas A, Siores E (2016) Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. RSC Adv 6:1919–1924

    Article  Google Scholar 

  12. Pan G, Zhu J, Ma S, Sun G, Yang X (2013) Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. ACS Appl Mater Interfaces 5:12716–12724

    Article  Google Scholar 

  13. Shen J, Yao Y, Liu Y, Leng J (2016) Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J Mater Chem C 4:7614–7621

    Article  Google Scholar 

  14. He C, Qiu S, Wang X, Liu J, Luan L, Liu W, Itoh M, Machida K (2012) Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties. J Mater Chem 22:22160–22166

    Article  Google Scholar 

  15. Wang C, Han X, Zhang X, Hu S, Zhang T, Wang J, Du Y, Wang X, Xu P (2010) Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J Phys Chem C 114:14826–14830

    Article  Google Scholar 

  16. Zhao B, Guo X, Zhao W, Deng J, Shao G, Fan B, Bai Z, Zhang R (2016) Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces 8:28917–28925

    Article  Google Scholar 

  17. Zhao B, Shao G, Fan B, Zhao W, Zhang R (2015) Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys Chem Chem Phys 17:2531–2539

    Article  Google Scholar 

  18. Wang Z, Wu L, Zhou J, Jiang Z, Shen B (2014) Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption. Nanoscale 6:12298–12302

    Article  Google Scholar 

  19. Liu P, Huang Y, Yan J, Yang Y, Zhao Y (2016) Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl Mater Interfaces 8:5536–5546

    Article  Google Scholar 

  20. Han M, Yin X, Kong L, Li M, Duan W, Zhang L, Cheng L (2014) Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A 2:16403–16409

    Article  Google Scholar 

  21. Zhang X, Ji G, Liu W, Zhang X, Gao Q, Li Y, Du Y (2016) A novel Co/TiO2 nanocomposite derived from a metal–organic framework: synthesis and efficient microwave absorption. J Mater Chem C 4:1860–1870

  22. Li N, Cao M, Hu C (2012) A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers. J Mater Chem 22:18426–18432

  23. Zhu J, Wei S, Haldolaarachchige N, Young D, Guo Z (2011) Electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe–silica nanoparticles. J Phys Chem C 115:15304–15301

  24. Feng C, Liu X, Sun Y, Jin C, Lv Y (2014) Enhanced microwave absorption of flower-like FeNi@C nanocomposites by dual dielectric relaxation and multiple magnetic resonance. RSC Adv 4:22170–22175

  25. Wang H, Wu L, Jiao J, Zhou J, Xu Y, Zhang H, Jiang Z, Shen B, Wang Z (2015) Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J Mater Chem A 3:6517–6525

  26. Li X, Feng J, Du Y, Bai J, Fan H, Zhang H, Peng Y, Li F (2015) One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J Mater Chem A 3:5535–5546

    Article  Google Scholar 

  27. Chen Y, Xiao G, Wang T, Ouyang Q, Qi L, Ma Y, Gao P, Zhu C, Cao M, Jin H (2011) Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 115:13603–13608

    Article  Google Scholar 

  28. Micheli D, Vircella A, Pastore R, Marchetli M (2014) Ballistic and electromagnetic shielding behaviour of multifunctional Kevlar fiber reinforced epoxy composites modified by carbon nanotubes. Carbon 104:141–156

    Article  Google Scholar 

  29. Song W, Cao M, Fan L, Lu M, Li Y, Wang C, Ju H (2014) Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77:130–142

    Article  Google Scholar 

  30. Zhan Y, Zhao R, Lei Y, Meng F, Zhong J, Liu X (2011) A novel carbon nanotubes/Fe3O4 inorganic hybrid material: synthesis, characterization and microwave electromagnetic properties. J Magn Magn Mater 323:1006–1010

    Article  Google Scholar 

  31. Zhang S, Zhang Q, Zhao Y, Jiao Q, Ni X, Wang Y, Cheng Y, Ding C (2017) Core/shell structured composites of hollow spherical CoFe2O4 and CNTs as absorbing materials. J Alloys Compd 694:309–312

    Article  Google Scholar 

  32. Wen F, Zhang F, Liu Z (2011) Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C 115:14025–14030

    Article  Google Scholar 

  33. Zhao H, Han X, Han M, Zhang L, Xu P (2010) Preparation and electromagnetic properties of multiwalled carbon nanotubes/Ni composites by γ-irradiation technique. Mater Sci Eng B 167:1–5

    Article  Google Scholar 

  34. Singh BP, Saket DK, Singh AP, Pati S, Gupta TK, Singh VN, Dhakate SR, Dhawan SK, Kotnala RK, Mathur RB (2015) Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes. J Mater Chem A 3:13203–13209

    Article  Google Scholar 

  35. Bittencourt C, Felten A, Ghijsen J, Pireaux JJ, Drube W, Erni R, Van Tendeloo G (2007) Decorating carbon nanotubes with nickel nanoparticles. Chem Phys Letter 436:368–372

    Article  Google Scholar 

  36. Bao T, Zhao Y, Su X, Duan Y (2011) A study of the electromagnetic properties of cobalt-multiwalled carbon nanotubes (Co-MWCNTs) composites. Mater Sci Eng B 176:906–912

    Article  Google Scholar 

  37. Liu J, Itoh M, Machida K (2003) Electromagnetic wave absorption properties of a-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range. Appl Phys Lett 83:4017–4019

    Article  Google Scholar 

  38. Li X, Gu H, Liu J, Wei H, Qiu S, Fu Y, Lv H, Lu G, Wang Y, Guo Z (2015) Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. RSC Adv 5:7237–7244

    Article  Google Scholar 

  39. Lu M, Cao M, Chen Y, Cao W, Liu J, Shi H, Zhang D, Wang W, Yuan J (2015) Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl Mater Interfaces 7:19408–19415

    Article  Google Scholar 

  40. Bertram BD, Gerhardt RA (2011) Effects of frequency, percolation, and axisymmetric microstructure on the electrical response of hot-pressed alumina–silicon carbide whisker composites. J Am Ceram Soc 94:1125–1132

    Article  Google Scholar 

  41. Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, Xu P (2014) Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl Mater Interfaces 6:12997–13006

    Article  Google Scholar 

  42. Kittel C (1948) On the theory of ferromagnetic resonance absorption. Phys Rev 73:155–161

    Article  Google Scholar 

  43. Lv H, Ji G, Wang M, Shang C, Zhang H, Du Y (2014) Hexagonal-cone like of Fe50Co50 with broad frequency microwave absorption: effect of ultrasonic irradiation time. J Alloys Compd 615:1037–1042

    Article  Google Scholar 

  44. Sun X, He J, Li G, Tang J, Wang T, Guo Y, Xue H (2013) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1:765–777

    Article  Google Scholar 

  45. Yasir Rafique M, Panb L, Farid A (2016) From nano-dendrite to nano-sphere of Co100−xNix alloy: composition dependent morphology, structure and magnetic properties. J Alloys Compd 656:443–451

    Article  Google Scholar 

  46. Wu M, Zhang Y, Hui S, Xiao T, Ge S, Hines W, Budnick J, Taylor G (2002) Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl Phys Lett 80:4404–4406

    Article  Google Scholar 

  47. Smith D, Padilla W, Vier D, Nemat-Nasser S, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Physi Rev Letters 84:4184–4187

  48. Kasagi T, Tsutaoka T, Hatakeyama K (2006) Negative permeability spectra in permalloy granular composite materials. Appl Phys Lett 88:172502

  49. Deng L, Han M (2007) Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl Phys Lett 91:023119

  50. Xiang J, Li J, Zhang X, Ye Q, Xu J, Shen X (2014) Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater Chem A 2:16905–16914

  51. Liu Q, Zhang D, Han T (2008) Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl Phys Lett 93:013110

  52. Wen S, Liu Y, Zhao X, Cheng J, Li H (2014) Facile synthesis of novel cobalt particles by reduction method and their microwave absorption properties. Powder Technol 264:128–132

  53. Li H, Zhu H, Guo H, Yu L (2007) Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes. Mater Lett 61:3547–3550

  54. Cui H, Li T, Zhao T, Liu H, Liu L, Zhang W (2013) Electromagnetic wave absorbing properties of multi-wall carbon nanotube/Fe3O4 hybrid materials. New Carbon Mater 28:184–190

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 51572157), the Fundamental Research Funds of Shandong University (2015JC016, 2015JC036), and the Science and Technology Development Plan (2014GGX102004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiurong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Qiao, J., Liu, J. et al. Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. Adv Compos Hybrid Mater 1, 149–159 (2018). https://doi.org/10.1007/s42114-017-0008-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0008-z

Keywords

Navigation