Skip to main content

Advertisement

Log in

Role of agricultural land practices in the behaviour of nitrates in groundwater

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Nitrate contamination is a major issue in aquifers that are being exploited for drinking water. Exceeding maximum contamination levels (MCL) of nitrates in drinking water can cause acute and chronic health problems. In agricultural areas, aquifers are vulnerable to nitrate contamination due to the excessive use of fertiliser. This research study investigated the potential impacts of anthropogenic nitrates on the giant Guarani Aquifer System (GAS) in Brazil, where nitrogen-based fertiliser use had doubled from 2005 to 2016. The study results indicated that there exists two different systems for the behaviour of nitrates in groundwater, above and below a 150 m depth of the aquifer. For the aquifer depth above 150 m, Cl (positive influence) and F (negative influence) were found to significantly influence NO3 contamination (p < 0.05). However, statistically significant relationships between NO3 and other influential factors were not found for the aquifer depth below 150 m. Even though agricultural practices do not pose a direct impact on NO3 contamination of groundwater, it was evident that anthropogenic inputs of NO3 could elevate the concentrations in the aquifer depth reaching 150 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adimalla, N., & Qian, H. (2021). Geospatial distribution and potential noncarcinogenic health risk assessment of nitrate contaminated groundwater in Southern India: A case study. Archives of Environmental Contamination and Toxicology, 80(1), 107–119.

    Article  CAS  Google Scholar 

  • Ako, A. A., Eyong, G. E. T., Shimada, J., Koike, K., Hosono, T., Ichiyanagi, K., Richard, A., Tandia, B. K., Nkeng, G. E., & Roger, N. N. (2014). Nitrate contamination of groundwater in two areas of the Cameroon Volcanic Line (Banana Plain and Mount Cameroon area). Applied Water Science, 4(2), 99–113.

    Article  CAS  Google Scholar 

  • Almasri, M. N., & Kaluarachchi, J. J. (2004). Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. Journal of Hydrology, 295(1–4), 225–245.

    Article  CAS  Google Scholar 

  • Araújo, L. M., França, A. B., & Potter, P. E. (1999). Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Parana Basins, South America, and comparison with the Navajo-Nugget aquifer system, USA. Hydrogeology Journal, 7, 317–336.

    Article  Google Scholar 

  • Arora, K., & Srivastava, A. (2013). Nitrogen losses due to nitrification: plant based remedial prospects. International Journal of Bioassays, 2(7), 984–991.

    CAS  Google Scholar 

  • Baalousha, H. (2008). Analysis of nitrate occurrence and distribution in groundwater in the Gaza Strip using major ion chemistry. Global NEST Journal, 10(3), 337–349.

    Google Scholar 

  • Biddau, R., Cidu, R., Da Pelo, S., Carletti, A., Ghiglieri, G., & Pittalis, D. (2019). Source and fate of nitrate in contaminated groundwater systems: assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools. Science of the Total Environment, 647, 1121–1136.

    Article  CAS  Google Scholar 

  • Bonotto, D. M., Wijesiri, B., & Goonetilleke, A. (2019). Nitrate-dependent Uranium mobilisation in groundwater. Science of the Total Environment, 693, 133655.

    Article  CAS  Google Scholar 

  • Bonotto, D. M., Wijesiri, B., Vergotti, M., da Silveira, E. G., & Goonetilleke, A. (2018). Assessing mercury pollution in Amazon River tributaries using a Bayesian Network approach. Ecotoxicology and Environmental Safe, 166, 354–358.

    Article  CAS  Google Scholar 

  • Burkart, M. R., & Stoner, J. D. (2008). Nitrogen in groundwater associated with agricultural systems. In J. L. Hatfield & R. F. Follett (Eds.), Nitrogen in the environment (pp. 177–202). Elsevier.

    Chapter  Google Scholar 

  • Cabral Pinto, M., Ordens, C. M., Condesso de Melo, M. T., Inácio, M., Almeida, A., Pinto, E., & Ferreira da Silva, E. A. (2020). An inter-disciplinary approach to evaluate human health risks due to long-term exposure to contaminated groundwater near a chemical complex. Exposure and Health, 12(2), 199–214.

    Article  CAS  Google Scholar 

  • Campos, H. C. N. S. (2000). Hydrogeological map of Guarani aquifer. Acta Geológica Leopoldensia, 23(4), 1–50.

    Google Scholar 

  • Canter, L. W. (2019). Nitrates in groundwater. Routledge.

    Book  Google Scholar 

  • Carroll, S., & Goonetilleke, A. (2005). Assessment of high density of onsite wastewater treatment systems on a shallow groundwater coastal aquifer using PCA. Environmetrics, 16(3), 257–274.

    Article  CAS  Google Scholar 

  • Chen, J., Wu, H., & Qian, H. (2016). Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, northwest China. Exposure and Health, 8(3), 349–359.

    Article  Google Scholar 

  • Costa, C. W., Lorandi, R., Lollo, J. A., & Santos, V. S. (2019). Potential for aquifer contamination of anthropogenic activity in the recharge area of the Guarani Aquifer System, southeast of Brazil. Groundwater for Sustainable Development, 8, 10–23.

    Article  Google Scholar 

  • Dwivedi, B. S., Singh, V. K., Meena, M. C., Dey, A., & Datta, S. P. (2016). Integrated nutrient management for enhancing nitrogen use efficiency. Indian Journal of Fertililisers, 12(4), 62–71.

    Google Scholar 

  • Egbinola, C. N., & Amanambu, A. C. (2014). Groundwater contamination in Ibadan, south-west Nigeria. Springerplus, 3(1), 1–6.

    Article  CAS  Google Scholar 

  • Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945–948.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2006). Fertilizer use by crops—fertilizer and plant nutrition bulletin. FAO.

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2018). World food and agriculture—statistical pocketbook 2018. FAO.

    Book  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2020). World fertilizer trends and outlook to 2020: Summary report. FAO.

    Google Scholar 

  • Follett, R., & Delgado, J. (2002). Nitrogen fate and transport in agricultural systems. Journal of Soil Water Conservation, 57(6), 402–408.

    Google Scholar 

  • Jalali, M. (2009). Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. Environmental Geology, 56(7), 1479–1488.

    Article  CAS  Google Scholar 

  • Jayarathne, A., Wijesiri, B., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2019). Role of adsorption behavior on metal build-up in urban road dust. Journal of Environmental Sciences, 83, 85–95.

    Article  CAS  Google Scholar 

  • Joshua, W., Thushyanthy, M., & Nanthagoban, N. (2013). Seasonal variation of water table and groundwater quality of the karst aquifer of the Jaffna Peninsula-Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 41(1), 3–12.

    Article  CAS  Google Scholar 

  • Juntakut, P., Snow, D. D., Haacker, E. M., & Ray, C. (2019). The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in Nebraska’s groundwater system. Journal of Contaminant Hydrology, 220, 33–48.

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., & Kumar, M. (2021). Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: A case study from Texvalley (Tiruppur region) of India. Chemosphere, 265, 129083.

    Article  CAS  Google Scholar 

  • Kim, K., Rajmohan, N., Kim, H.-J., Kim, S.-H., Hwang, G.-S., Yun, S.-T., Gu, B., Cho, M. J., & Lee, S.-H. (2005). Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: A case study in Namwon, Korea. Geochemical Journal, 39(4), 357–369.

    Article  CAS  Google Scholar 

  • Korbel, K., Hancock, P., Serov, P., Lim, R., & Hose, G. (2013). Groundwater ecosystems vary with land use across a mixed agricultural landscape. Journal of Environmental Quality, 42(2), 380–390.

    Article  CAS  Google Scholar 

  • Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archives of Environmental Contamination and Toxicology, 80(1), 1–10.

    Article  Google Scholar 

  • Luk, G. K., & Au-Yeung, W. C. (2002). Experimental investigation on the chemical reduction of nitrate from groundwater. Advances in Environmental Research, 6(4), 441–453.

    Article  CAS  Google Scholar 

  • Mahvi, A., Nouri, J., Babaei, A., & Nabizadeh, R. (2005). Agricultural activities impact on groundwater nitrate pollution. International Journal of Environmental Science and Technology, 2(1), 41–47.

    Article  CAS  Google Scholar 

  • Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian Journal of Environmental Health, 42(1), 28–39.

    CAS  Google Scholar 

  • McLay, C., Dragten, R., Sparling, G., & Selvarajah, N. (2001). Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution, 115(2), 191–204.

    Article  CAS  Google Scholar 

  • Menció, A., Boy, M., & Mas-Pla, J. (2011). Analysis of vulnerability factors that control nitrate occurrence in natural springs (Osona Region, NE Spain). Science of the Total Environment, 409(16), 3049–3058.

    Article  Google Scholar 

  • Menció, A., & Mas-Pla, J. (2008). Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. Journal of Hydrology, 352(3), 355–366.

    Article  Google Scholar 

  • Menció, A., Mas-Pla, J., Otero, N., Regàs, O., Boy-Roura, M., Puig, R., Bach, J., Domènech, C., Zamorano, M., & Brusi, D. (2016). Nitrate pollution of groundwater; all right…, but nothing else? Science of the Total Environment, 539, 241–251.

    Article  Google Scholar 

  • Miranda, L. S., Wijesiri, B., Ayoko, G. A., Egodawatta, P., & Goonetilleke, A. (2021). Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Research, 202, 11736.

    Article  Google Scholar 

  • Pfenning, K., & McMahon, P. (1997). Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. Journal of Hydrology, 187(3–4), 283–295.

    Article  CAS  Google Scholar 

  • Rakib, M. A., Quraishi, S. B., Newaz, M. A., Sultana, J., Bodrud-Doza, M., Rahman, M. A., & Bhuiyan, M. A. (2022). Groundwater quality and human health risk assessment in selected coastal and floodplain areas of Bangladesh. Journal of Contaminant Hydrology, 249, 104041.

    Article  CAS  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Research, 42(16), 4215–4232.

    Article  CAS  Google Scholar 

  • Scutari M (2013) Package ‘bnlearn’: Bayesian network structure learning, parameter learning and inference. http://www2.uaem.mx/r-mirror/web/packages/bnlearn/bnlearn.pdf

  • Scutari, M. (2010). Learning Bayesian networks with the bnlearn R Package. Journal of Statistical Software, 35(3), 1–22.

    Article  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1970). Aquatic chemistry; an introduction emphasizing chemical equilibria in natural waters. Wiley.

    Google Scholar 

  • Tang, C., Zhang, Z., & Sun, X. (2012). Effect of common ions on nitrate removal by zero-valent iron from alkaline soil. Journal of Hazardous Materials, 231–232, 114–119.

    Article  Google Scholar 

  • Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3–4), 312–318.

    Article  Google Scholar 

  • van Berk, W., & Fu, Y. (2017). Redox roll-front mobilization of geogenic uranium by nitrate input into aquifers: risks for groundwater resources. Environmental Science and Technology, 51(1), 337–345.

    Article  Google Scholar 

  • Wijesiri, B., Deilami, K., McGree, J., & Goonetilleke, A. (2018). Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: a Bayesian network approach. Environmental Pollution, 233, 655–661.

    Article  CAS  Google Scholar 

  • Yesilnacar, M. I., Sahinkaya, E., Naz, M., & Ozkaya, B. (2008). Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environmental Geology, 56(1), 19–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil and Australian Technology Network (ATN) (Sprint Grant ID: 2016/50327-4), and by Guangdong Basic and Applied Basic Research Foundation, China (2019A1515110353).

Author information

Authors and Affiliations

Authors

Contributions

All authors AJ, DB, BW and AG contributed to the study conception and design, as well in the acquisition, analysis and interpretation of data, reading and approving the final version of the manuscript.

Corresponding author

Correspondence to D. M. Bonotto.

Ethics declarations

Consent to participate

All authors AJ, DB, BW and AG give explicit consent to participate in the publication of this manuscript into International Journal of Energy and Water Resources.

Consent to publish

All authors AJ, DB, BW and AG agreed with the content of the manuscript, giving explicit consent to its submission for publication into International Journal of Energy and Water Resources.

Conflict of interest

All authors AJ, DB, BW and AG declare no conflicts of interest/competing interests for the publication of this manuscript into International Journal of Energy and Water Resources.

Availability of data

All authors AJ, DB, BW and AG declare that all available data are reported in this paper.

Code availability

Not applicable.

Ethical statement

This is an observational study that did not involve human participants or biological materials, thus, not requiring ethical approval of the Research Ethics Committee of the authors’ institution.

Animal research

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 614 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayarathne, A., Bonotto, D.M., Wijesiri, B. et al. Role of agricultural land practices in the behaviour of nitrates in groundwater. Int J Energ Water Res 6, 437–444 (2022). https://doi.org/10.1007/s42108-022-00208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-022-00208-x

Keywords

Navigation