Skip to main content
Log in

Hydrogeochemical and pollution assessment of water resources within a mining area, SE Nigeria, using an integrated approach

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

The hydrogeochemical signatures, quality, and suitability of water resources in Okurumutet-Iyamitet mine sites, southeastern Nigeria were evaluated using indexical and chemometric methods for domestic and drinking purposes. Groundwater and surface water samples were evaluated for 22 physicochemical and hydrogeochemical parameters, employing standard techniques. Results revealed the major cations and anions to be Ca2+  > Mg2+  > K+  > Na+ and HCO3 > Cl > SO42− > NO3, respectively. Heavy metals were revealed to be in the order: Mn > Pb > Cd > Zn > Fe > Ba and Pb > Mn > Cd > Fe > Zn > Ba, for groundwater and surface water, respectively. Five water types were identified, with the dominant water types being Ca–Mg–HCO3 (61.23%) and Mg–HCO3–Cl (38.85%). Overall, the major chemical ion concentrations in the waters were within required standards, albeit most of the samples recorded pH concentrations above the required values, describing the waters as weakly acidic. The level of heavy metals was assessed using the modified heavy metal index and pollution load index. Most of the water samples are polluted with heavy metals including Cd and Pb. The drinking water quality assessment was performed using water quality index, overall index of pollution, and geospatial models. Results revealed that 69.23% of the waters (within the east-central and southeastern area) are unsuitable. Correlation and factor analyses suggested that the associations between the analytes are attributable to geogenic and anthropogenic factors, although anthropogenic activities seem to have played a higher role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamu, C. I., & Nganje, T. N. (2010). Heavy metal contamination of surface soil in relationships to land use patterns: A case study of Benue State Nigeria. Materials Sciences and Applications, 1(03), 127

    Article  CAS  Google Scholar 

  • Adamu, C. I., Nganje, T. N., & Edet, A. (2014). Hydrochemical assessment of pond and stream water near abandoned barite mine sites in parts of Oban massif and Mamfe Embayment, Southeastern Nigeria. Environmental Earth Sciences, 71, 3793–3811

    Article  CAS  Google Scholar 

  • Adamu, C. I., Nganje, T. N., & Edet, A. (2015). Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environmental Nanotechnology, Monitoring & Management, 3, 10–21

    Article  Google Scholar 

  • Adewumi, A. J., & Laniyan, T. A. (2020). Ecological and human health risks associated with metals in water from Anka Artisanal Gold Mining Area, Nigeria. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2019.1710694

    Article  Google Scholar 

  • Aghazadeh., N., Chitsazan, M., & Golestan, Y. . (2017). Hydrochemistry and quality assessment of groundwater in the Ardabil area Iran. Applied Water Science, 7, 3599–3616. https://doi.org/10.1007/s13201-016-0498-9

    Article  CAS  Google Scholar 

  • Ahamed, A. J., Loganathan, K., & Jayakumar, R. (2015). Hydrochemical characteristics and quality assessment of groundwater in Amaravathi river basin of Karur district, Tamil Nadu, South India. Sustainable Water Resources and Management, 1, 273–291

    Article  Google Scholar 

  • Akpeke, G. B. (2008). Investigation of the origin, nature, and occurrence of barite mineralization in Cross River State, Southeastern Nigeria. The University of Calabar, Nigeria (Unpub. Ph. D. thesis).

  • Alaya, M. B., Saidi, S., & Zemni, T. (2014). Suitability assessment of deep groundwater for drinking and irrigation use in the Djefara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Science, 71, 3387–3421. https://doi.org/10.1007/s12665-013-2729-9

    Article  CAS  Google Scholar 

  • Amadi, A. N., Aminu, T., Okunlola, I. A., Olasehinde, P. I., & Jimoh, M. O. (2015). Lithologic influence on the hydrogeochemical characteristics of groundwater in Zango North-west Nigeria. Natural Resources and Conservation, 3(1), 11–18

    Article  Google Scholar 

  • American Public Health Association (APHA). (2012). The standard method for the examination of water and wastewater. (22nd ed.). American Public Health Association.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater, and pollution. Balkema.

    Google Scholar 

  • Arno, H. R. (2007). Manganese compounds. Ullmann’s Encyclopedia of Chemical Technology, 2007, 14356007–14356123

    Google Scholar 

  • ATSDR (2000). Toxicological profile for manganese. Atlanta, GA, United States Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.

  • Ayantobo, O. O. (2014). Gold mining in Igun-Ijesha, South-Western Nigeria: Impacts and implications for water quality. American Journal of Engineering Science, 10(3), 289–300. https://doi.org/10.3844/ajessp.2014.289.300

    Article  CAS  Google Scholar 

  • Barzegar, R., Moghaddam, A. A., & Tziritis, E. (2016). Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environmental Earth Science, 75, 1486. https://doi.org/10.1007/s12665-016-63021

    Article  Google Scholar 

  • Barzegar, R., Moghaddam, A. A., Adamowski, J., & Nazemi, A. M. (2018). Assessing the potential origins and human health risks of trace elements in groundwater: A case study in the Khoy plain Iran. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0194-9

    Article  Google Scholar 

  • Bathrellos, G. D., Skilodimou, H. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2017). Suitability estimation for urban development using multi-hazard assessment map. Science of the Total Environment, 575, 119–134

    Article  CAS  Google Scholar 

  • Belkhiri, L., Mouni, L., Narany, T. S., & Tiri, A. (2017). Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater for Sustainable Development, 4, 12–22

    Article  Google Scholar 

  • Bhutiani, R., Kulkarni, D. B., Khanna, D. R., & Gautam, A. (2017). Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy, Ecology and Environment, 2, 155–167. https://doi.org/10.1007/s40974016-0019-6

    Article  Google Scholar 

  • Bricker, O. P., Jones, B. F., & Bowser, C. J. (2003). Mass-balance approach to interpreting weathering reactions in watershed systems. Trace metal Geology, 5, 605

    Google Scholar 

  • Campos, I., Abrantes, N., Keizer, J. J., Vale, C., & Pereira, P. (2016). Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of Total Environment, 572, 1363–1376

    Article  CAS  Google Scholar 

  • Chaturvedi, A., Bhattacharjee, S., Kumar, A., Singh, A., & Kumar, V. (2018). A new approach for indexing groundwater heavy metal pollution. Ecological Indicators, 87, 323–331. https://doi.org/10.1016/j.ecolind.2017.12.052

    Article  CAS  Google Scholar 

  • Cross River Basin Development Authority, (CRBDA) (1992). Inventory of Natural Site Conditions-Soil, Slope, Hydrology, Landuse, and Vegetation throughout the areas of operation of the Authority. Surveys and Mapping Geodata Ltd (Nigeria) with Institute of Applied Geosciences (Germany), 145

  • Dash, S., Borah, S. S., & Kalamdhad, A. (2019). A modified indexing approach for assessment of heavy metal contamination in Deepor Beel India. Ecological Indicators, 106, 105444. https://doi.org/10.1016/j.ecolind.2019.105444

    Article  CAS  Google Scholar 

  • Davies, B. E., Bowman, C., Davies, T. C., & Sellinus, O. (2005). Medical geology: perspectives and prospects. Essentials of Medical Geology, 1, 1–14

    Google Scholar 

  • Egbueri, J. C. (2018). Assessment of the quality of groundwater proximal to dumpsites in Awka and Nnewi metropolises: A comparative approach. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-018-00041

    Article  Google Scholar 

  • Egbueri, J. C. (2019a). Water quality appraisal of selected farm provinces using integrated hydrogeochemical, multivariate statistical, and microbiological techniques. Modeling Earth System and Environment. https://doi.org/10.1007/s40808-019-00585-z

    Article  Google Scholar 

  • Egbueri, J. C. (2019b). Evaluation and characterization of the groundwater quality and hydrogeochemistry of Ogbaru farming district in southeastern Nigeria. SN Applied Sciences, 1(8), 851. https://doi.org/10.1007/s42452-019-0853-1

    Article  CAS  Google Scholar 

  • Egbueri, J. C. (2020). Heavy metals pollution source identification and probabilistic health risk assessment of shallow groundwater in Onitsha. Nigeria. Analytical Letters., 1, 1. https://doi.org/10.1080/00032719.2020.1712606

    Article  CAS  Google Scholar 

  • Egbueri, J. C., & Enyigwe, M. T. (2020). Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka metallogenic district in southeastern Nigeria. Analytical Letters, 53(17), 2812–2839. https://doi.org/10.1080/00032719.2020.1759616

    Article  CAS  Google Scholar 

  • Egbueri, J. C., & Unigwe, C. O. (2020). Understanding the extent of heavy metal pollution in drinking water supplies from Umunya, Nigeria: An indexical and statistical assessment. Analytical Letters, 53(13), 2122–2144. https://doi.org/10.1080/00032719.2020.1731521

    Article  CAS  Google Scholar 

  • Egbueri, J. C., Mgbenu, C. N., & Chukwu, C. N. (2019). Investigating the hydrogeochemical processes and quality of water resources in Ojoto and environs using integrated classical methods. Modeling Earth Systems and Environment, 5(4), 1443–1461. https://doi.org/10.1007/s40808-01900613-y

    Article  Google Scholar 

  • Egbueri, J. C., Ukah, B. U., Ubido, O. E., & Unigwe, C. O. (2020). A chemometric approach to source apportionment, ecological and health risk assessment of heavy metals in industrial soils from southwestern Nigeria. International Journal of Environmental and Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1769615

    Article  Google Scholar 

  • ElAmari, K., Valera, P., Hibti, M., Pretti, S., Marcello, A., & Essarraj, S. (2014). Impact of mine tailings on surrounding soils and groundwater: The case of Kettaraold mine, Morocco. Journal of African Earth Sciences, 100, 437–449

    Article  CAS  Google Scholar 

  • Elinder, C. G. (1992). Cadmium as an environmental hazard. IARC Scientific Publications, 118, 123–132

    Google Scholar 

  • Ezenwaji, E. E., & Ezenweani, I. D. (2018). Spatial analysis of groundwater quality in Warri Urban Nigeria. Sustainable Water Resources and Management, 1, 2. https://doi.org/10.1007/s40899-018-0264-2

    Article  Google Scholar 

  • Feng, Y., Fanghui, Y., & Li, C. (2019). Improved entropy weighting model in water quality evaluation. Water Resources & Management, 33(6), 2049–2056

    Article  Google Scholar 

  • Jehan, S., Khan, S., Khattak, S. A., Muhammad, S., Rashid, A., & Muhammad, N. (2019). Hydrochemical properties of drinking water and their sources apportionment of pollution in Bajaur Agency, Pakistan. Measurement, 139, 249–257

    Article  Google Scholar 

  • Kacmaz, H. (2020). Assessment of heavy metal contamination in natural waters of Dereli, Giresun: An area containing mineral deposits in northeastern Turkey. Environmental Monitoring and Assessment, 192(2), 91. https://doi.org/10.1007/s10661-019-8057-0

    Article  CAS  Google Scholar 

  • Kalaivanan, K., Gurugnanam, B., Pourghasemi, H. R., Suresh, M., & Kumaravel, S. (2017). Spatial assessment of groundwater quality using water quality index and hydrochemical indices in the Kodavanar sub-basin. Sustainable Water Resources and Management. https://doi.org/10.1007/s40899-017-0148-x

    Book  Google Scholar 

  • Khalid, S. (2019). An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. Journal of Geochemical Exploration, 197, 14–26

    Article  Google Scholar 

  • Krishna-Kumar, S., Bharani, R., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2014). Hydrogeochemistry and groundwater quality appraisal of part of south Chennai coastal aquifers, Tamil Nadu, India using WQI and fuzzy logic method. Applied Water Science, 4, 341–350

    Article  CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, J. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341–351

    Article  CAS  Google Scholar 

  • Lar, U., Tsuwang, K., & Gusikit R. (2013). Lead and mercury contamination associated with Artisanal Gold Mining in Anka, Zamfara State, Northwestern Nigeria: The continued unabated Zamfara lead poisoning. Journal of Earth Science Engineering, 3, 764–775.

    Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2013). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Sciences, 69, 2211–2225

    Article  CAS  Google Scholar 

  • Lloyd, J. W., & Heathcote, J. A. A. (1985). Natural inorganic hydrochemistry in relation to groundwater.

  • Mahato, M. K., Singh, G., Singh, P. K., Singh, A. K., & Tiwari, A. K. (2017). Assessment of mine water quality using heavy metal pollution index in a coal mining area of Damodar River Basin, India. Bulletin of environmental contamination and toxicology, 99(1), 54–61

    Article  CAS  Google Scholar 

  • McDonald, J. (2006). Alkalinity & pH relationships. CSTN, 392–394.

  • Mgbenu, C. N., & Egbueri, J. C. (2019). The hydrogeochemical signatures, quality indices, and health risk assessment of water resources in Umunya district, southeast Nigeria. Applied Water Science, 9(1), 22. https://doi.org/10.1007/s13201-019-0900-5

    Article  CAS  Google Scholar 

  • Monnin, C., Wheat, C. G., Dupre, B., Elderfield, H., & Mottl, M. M. (2001). Barium geochemistry in sediment pore waters and formation waters of the oceanic crust on the eastern flank of the Juan de Fuca Ridge (ODP Leg 168). Geochemistry, Geophysics, and Geosystems, 2(1), 1

    Article  Google Scholar 

  • Moran, M. S., Clarke, T. R., Kustas, W. P., Weltz, M., & Amer, S. A. (1994). Evaluation of hydrologic parameters in semiarid rangeland using remotely sensed spectral data. Water Resources Research, 30(5), 1287–1297

    Article  Google Scholar 

  • Mukate, S. V., Wagh, D., Panaskar, J. A., Jacobs, A., & Sawant, A. (2019). Development of a new integrated water quality index (IWQI) model to evaluate the drinking suitability of water. Ecological Indicators, 101, 348–354. https://doi.org/10.1016/j.ecolind.2019.01.034

    Article  CAS  Google Scholar 

  • Musa, O. K., Shaibu, M. M., & Kudamnya, E. A. (2013). Heavy metal concentration in groundwater around Obajana and its environs, Kogi State, North Central Nigeria. American International Journal of Contemporary Resources, 3(8), 170–177

    Google Scholar 

  • Namieśnik, J., & Rabajczyk, A. (2010). The speciation and physicochemical forms of metals in surface waters and sediments. Chemical Speciation and Bioavailability, 22(1), 1–24

    Article  Google Scholar 

  • Nemčić-Jurec, J., Singh, S. K., Jazbec, A., Gautam, S. K., & Kovač, I. (2019). Hydrochemical investigations of groundwater quality for drinking and irrigational purposes: Two case studies of Koprivnica-Križevci County (Croatia) and district Allahabad (India). Sustainable Water Resources Management, 5(2), 467–490

    Article  Google Scholar 

  • Obiora, S. C., Chukwu, A., Toteu, S. F., & Davies, T. C. (2016). Assessment of heavy metal contamination in soils around lead (Pb)-Zinc (Zn) mining areas in Enyigba, southeastern Nigeria. Journal of the Geological Society of India, 87(4), 453–462. https://doi.org/10.1007/s12594-016-0413-x

    Article  CAS  Google Scholar 

  • Okolo, C. C., Oyedotun, D. T., & Akamigbo, F. O. (2018). Open cast mining: Threat to water quality in rural community of Enyigba in south-eastern Nigeria. Applied Water Science, 8, 204.

    Article  CAS  Google Scholar 

  • Onyemesili, O. O., Egbueri, J. C., & Ezugwu, C. K. (2020). Assessing the pollution status, ecological and health risks of surface waters in Nnewi urban, Nigeria: Implications of poor waste disposal. Environmental Forensics. https://doi.org/10.1080/15275922.2020.1850564

    Article  Google Scholar 

  • Petters, S. W. (1989). A regional hydrogeological study of rural water supply options for planning and implementations of phase II rural water program of Cross River State. Cross River State, Unpublished report.

    Google Scholar 

  • Philip, G. M., & Watson, D. F. (1982). A precise method for determining contoured surfaces. Australian Petroleum Exploration Association Journal., 22, 205–212

    Google Scholar 

  • Rahman, M. M., Islam, M. A., Bodrud-Doza, M., Muhib, M. I., Zahid, A., Shammi, M., Tareq, S. M., & Kurasaki, M. (2017). Spatio-temporal assessment of groundwater quality and human health risk: A case study in Gopalganj Bangladesh. Exposure and Health. https://doi.org/10.1007/s12403-017-0253-y

    Article  Google Scholar 

  • Rezaei, A. H., Hassani, S., Hassani, N., Jabbari, S. B., Mousavi, F., & Rezaei, S. (2019). Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundwater for Sustainable Development., 9, 100245. https://doi.org/10.1016/j.gsd.2019.100245

    Article  Google Scholar 

  • Rose, A. W., & Cravotta, C. A. (1998). Geochemistry of coal mine drainage. In K. B. C. Brady, M. W. Smith, & J. Schueck (Eds.), Coal mine drainage prediction and pollution prevention in Pennsylvania. (pp. 53–82). Department. of Environmental Protection.

    Google Scholar 

  • Saba, N., & Umar, R. (2016). Hydrogeochemical assessment of Moradabad city, an important industrial town of Uttar Pradesh, India. Sustainable Water Resources and Management, 2, 217–236

    Article  Google Scholar 

  • Sargaonkar, A., & Deshpande, V. (2003). Development of an overall index of pollution for surface water based on a general classification scheme in the Indian context. Environmental Monitoring and Assessment, 89, 43–67

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarthy, P. L. (1967). Chemistry for sanitary engineers. (2nd ed.). McGraw Hill.

    Google Scholar 

  • Schoeller, H. (1977). Geochemistry of groundwater. In: Groundwater studies-an international guide for research and practice, supplement no. 3 to groundwater studies. UNESCO Technical Papers Hydrology. 7. UNESCO, Paris.

  • Simmonds, V., & Ghasemi, F. (2007). Investigation of manganese mineralization in Idahlu and Jokandy, southwest of Hashtrood NW Iran. BHM Berg-und Hüttenmännische Monatshefte, 152(8), 263–267

    Article  CAS  Google Scholar 

  • Standards Organization of Nigeria. (SON 2015). Nigerian standard for drinking water quality. 554, 13–4. Abuja: Nigerian Industrial Standard.

  • Tiwari, A. K., Singh, A. K., & Singh, M. P. (2017). Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India. Applied Water Science, 7, 1609–1623

    Article  CAS  Google Scholar 

  • Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology. (p. 636). Wiley.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metals levels in estuaries and the formation of a pollution index. Helgolander Meeresuntersuchungen, 33(1–4), 566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • Tüzen, M. (2003). Determination of heavy metals in soil, mushroom, and plant samples by atomic absorption spectrometry. Microchemical Journal, 74(3), 289–297

    Article  Google Scholar 

  • Tziritis, E. P., Datta, P. S., & Barzegar, R. (2017). Characterization and assessment of groundwater resources in a complex hydrological basin of central Greece (Kopaida basin) with the joint use of hydrogeochemical analysis, multivariate statistics, and stable isotopes. Aquatic Geochemistry. https://doi.org/10.1007/s10498-017-9322-x

    Article  Google Scholar 

  • Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3(4), 291–303. https://doi.org/10.1007/s42108-019-00039-3

    Article  Google Scholar 

  • US-EPA (US Environmental Protection Agency). (2017) National recommended water quality criteria-aquatic life criteria table and human health criteria table. https://www.epa.gov.wqc/national-recommended-water-quality criteria-aquatic-life-criteria-table.

  • USGS (US Geological Survey). (2001). National Water-Quality Assessment Data Warehouse.

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Gaikwad, S. K., Muley, A. A., & Varade, A. M. (2018). Health risk assessment of heavy metal contamination in groundwater of Kadava River Basin. Modeling Earth System and Environment. https://doi.org/10.1007/s40808-018-0496-z

    Book  Google Scholar 

  • WHO. (2017). Guidelines for Drinking Water Quality. (2nd ed.). World Health Organization.

    Google Scholar 

  • Zhao, C., Hobbs, B. E., & Ord, A. (2010). Theoretical analyses of nonaqueous-phase-liquid dissolution induced instability in two-dimensional fluid-saturated porous media. International Journal of Numerical and Analytical Methods and Geomechanics, 34, 1767–1796

    Google Scholar 

  • Zhao, C., Hobbs, B. E., Hornby, P., Ord, A., Peng, S., & Liu, L. (2008). Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. International Journal of Numerical and Analytical Methods and Geomechanics, 32, 1107–1130

    CAS  Google Scholar 

  • Zorn, M. R. (2004). Fundamentals of hydrology. Southeastern Geographer, 44(1), 124–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Omeka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest regarding this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igwe, O., Omeka, M.E. Hydrogeochemical and pollution assessment of water resources within a mining area, SE Nigeria, using an integrated approach. Int J Energ Water Res 6, 161–182 (2022). https://doi.org/10.1007/s42108-021-00128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-021-00128-2

Keywords

Navigation