Skip to main content

Advertisement

Log in

Intercomparison and Performance of Maize Crop Models and Their Ensemble for Yield Simulations in Brazil

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Maize yield prediction is of extreme importance for both identifying those locations with high potential for this crop and determining the yield gaps of the crop where it is currently produced. The most feasible way to estimate crop yields is with the use of crop simulation models, since well calibrated and evaluated. Even though, these estimations have uncertainties once the crop models are not complete. Recent studies have shown that crop models´ uncertainties can be reduced when several models are used together, in an ensemble. Considering that, this study aimed to calibrate and evaluate three crop simulation models (AEZ-FAO; DSSAT-CERES-Maize and APSIM-Maize) to estimate maize potential and attainable yields and to assess the performance of different ensemble strategies to reduce their uncertainties for maize yield prediction. Weather, soil and maize yield data from 79 experimental sites in Brazil were used for calibrating and evaluating these models. After that, the models showed only a good performance, with mean absolute errors (MAE) between 727 and 1376 kg ha−1, R2 between 0.49 and 0.79, d index between 0.78 and 0.94, and C index from 0.54 to 0.84. When the ensemble was applied, using the combination of two models (DSSAT-CERES-Maize and APSIM-Maize), the results showed a better performance than each single model or even the average of them, with MAE = 799 kg ha−1, R2 = 0.79, d = 0.94 and C = 0.84, allowing us to conclude that the ensemble of simulated maize yields is a good strategy to reduce uncertainties on simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Roma, FAO (Irrigation and Drainage Paper 56).

  • Amaral, T. A., Lima, A. C. R., Andrade, C. L. T., & Silva, S. D. A. (2015). Parametrização e avaliação do modelo CSM-CERES-Maize para cultivares de milho recomendadas para a microrregião de Pelotas, RS. Revista Brasileira de Milho e Sorgo,14, 371–391.

    Article  Google Scholar 

  • Andrade, C. L. T., Silva, P. P. G., Magalhães, B. G., Paixão, J. S., Melo, B. F., & Tigges, C. H. P. (2016). Parametrization of CSM-CERES-Maize model for a cultivar of high yield. Bento Gonçalves: XXXI Brazilian Congress of Maize and Sorghum. (in Portuguese).

    Google Scholar 

  • Andrioli, K. G., & Sentelhas, P. C. (2009). Brazilian maize genotypes sentitivity to water deficit estimated through a simple crop model. Pesquisa Agropecuaria Brasileira,44, 653–660.

    Article  Google Scholar 

  • Asseng, S., Ewert, F., Rosenzweig, C. J. W., Hatfield, J. L., Ruane, A. C., Bootle, K. J., et al. (2013). Uncertainty in simulation wheat yields under climate change. Nature Climate Change,3, 827–832.

    Article  CAS  Google Scholar 

  • Asseng, S., Ewert, F., Martre, P., Rotter, R. P., Lobell, D. B., Cammarano, D., et al. (2014). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147.

    Article  Google Scholar 

  • Ban, H. Y., Sim, D., Lee, K. J., Kim, J., Kim, K. S., & Lee, B. W. (2015). Evaluating maize growth models “CERES-Maize” and “IXIM-Maize” under elevation temperature conditions. Journal of Crop Science and Biotecnology,18, 265–272.

    Article  Google Scholar 

  • Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones, J. W., et al. (2014). How do various maize crop models vary in their responses to climate changes factors? Global Change Biology,20, 2301–2320.

    Article  PubMed  Google Scholar 

  • Battisti, R., Sentelhas, P. C., & Boote, K. J. (2017). Inter-comparison of performance of soybean crop simulation models and their ensembles in southern Brazil. Field Crops Research,200, 28–37.

    Article  Google Scholar 

  • Brasil (1981). Ministry of Mines and Energy. General Secretary. Project RADAMBRASIL. Rio de Janeiro: Natural Resources Report, 25, 29, 31. (in Portuguese).

  • Brown, H. E., Huth, N. I., Holzworth, D. P., Teixeira, E. I., Zyskowski, R. F., Hargreaves, J. N. G., et al. (2014). Plant modeling framework: software for building and running crop models on the APSIM plataform. Environmental Modeling & Software,62, 385–398.

    Article  Google Scholar 

  • Camargo, A. P., & Sentelhas, P. C. (1997). Performance evaluation of diferente potential evapotranspiration models in the state of São Paulo, Brazil. Revista Brasileira de Agrometeorologia,5, 89–97.

    Google Scholar 

  • Chauhan, Y. S., Solomon, K. F., & Rodriguez, D. (2013). Characterization of north-eastern Australian environments using APSIM for increasing rainfed maize production. Field Crops Research,144, 245–255.

    Article  Google Scholar 

  • Chisanga, C. B., Phiri, E., Shepande, C., & Sichingabula, H. (2015). Evaluating CERES-Maize model using planting dates and nitrogen fertilizer in Zambia. Journal of Agricultural Science,7, 79–97.

    Article  Google Scholar 

  • Costa, L. G., Marin, F. R., Nassif, D. S. P., Pinto, H. M. S., & Lopes-Assad, M. L. R. C. (2014). Simulating trash and nitrogen management effects on sugar cane yield. Revista Brasileira de Engenharia Agrícola e Ambiental,18, 469–474. (in Portuguese).

    Article  Google Scholar 

  • de Wit, C., T. (1965). Photosyntesis of leaf canopies. Wageningen: PUDOC, Agriculture Research Report, 663, p. 57.

  • Dias, H. B., & Sentelhas, P. C. (2017). Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research,231, 174–185.

    Article  Google Scholar 

  • Doorenbos, J. & Kassam, A. H. (1979). Yield response do water. Rome, FAO (Irrigation and Drainage Paper 33).

  • Doorenbos, J, & Pruitt, W., O. (1977). Crop water requirements. Rome, FAO (Irrigation and Drainage Paper 24).

  • Durand, J. L., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel, H. J., et al. (2017). How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? European Journal of Agronomy,100, 67–75.

    Article  CAS  Google Scholar 

  • EMBRAPA Soils (2014). Available in: https://www.embrapa.br/solos/busca-de-solucoes-tecnologicas/-/produto-servico/2236/banco-de-dados-de-solos---bd-solos.

  • EMBRAPA Maize and Sorghum (2016). Available in: https://www.embrapa.br/milho-e-sorgo/solucoes-tecnologicas/ensaionacional.

  • EMBRAPA Soils (2011). Available in: https://www.infoteca.cnptia.embrapa.br/handle/doc/920267.

  • García-Lopez, J., Lorite, I. J., García-Ruiz, R., & Domínguez, J. (2014). Evaluation of three simulation approaches for assessing yield of rainfed sunflower in Mediterrnean enviroment for climate change impact modeling. Climate Change,162, 124–147.

    Google Scholar 

  • Heinemann, A. B., & Sentelhas, P. C. (2011). Environmental group identification for upland rice production in central Brazil. Scientia Agricola, 68, 540–547.

    Article  Google Scholar 

  • Heinemann, A. B., Dingkuhn, M., Luquet, D., Combres, J. C., & Chapman, S. (2008). Characterization of drought stress evironments for upland rice and maize in central Brazil. Euphytica,162, 395–410.

    Article  Google Scholar 

  • Holzworth, D. P., Huth, N. I., de Voil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., et al. (2014). APSIM—Evolution towards a new generation of agricultural systems simulation. Environmental Modeling & Software,62, 327–350.

    Article  Google Scholar 

  • Hoogenboom, G., Jones, J. W., Porter, C. H., Wilkens, P. W., Boote, K. J., Batchelor, W. D., Hunt, L. A., Tsuji, G. Y. (2003). DSSAT v4 – A decision support system for agrotechnology transfer. International Consortium of Agricultural Systems Applications.

  • Huth, N. I., Bristow, K. L., & Verburg, K. (2012). SWIM3: Model use, calibration and validation. American Society of Agricultural and Biological Engineers,55, 1303–1313.

    Google Scholar 

  • Jabeen, F., Asif, M., Iftikhar, A., & Salman, M. (2017). Temperature trends and its impact on Zea mays (maize) crop in Faisalabad city through DSSAT-CERES-Maize model. Scientia Agricultarae,17, 8–14.

    Google Scholar 

  • Jones, E., Oliphant, T., Peterson, P. SciPy: Open source scientific tools for Python. Available in: http://www.scipy.org/. (2001).

  • Justino, F., Oliveira, E. C., Rodrigues, R. A., Gonçalves, P. H. L., Souza, P. J. O. P., Stordal, F., et al. (2013). Mean and interanual variability of maize and soybean in Brazil under global warming conditions. American Journal of Climate Change,2, 237–253.

    Article  Google Scholar 

  • Kiniry, J. R., Willians, J. R., Vanderlip, R. L., Atwood, J. D., Reicosky, D. C., Mulliken, J., et al. (1997). Evaluation of two maize models for nine US locations. Agronomy Journal,89, 421–426.

    Article  Google Scholar 

  • Knutti, R., Abramowitz, G., Collins, M., Eyring V., Gleckler, P. J., Hewitson, B. & Mearns, L. (2010). Good practice guidance paper on assessing and combining multi model climate projections. Intergovernmental Panel on Climate Change—IPPC Expert Meeting on Assessing and Combining Multi Model Climate Projections, Colorado.

  • Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., et al. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology,21, 1328–1341.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. L., Yang, J. Y., Drury, C. F., Reynolds, W. D., Tan, C. S., Bai, Y. L., et al. (2010). Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutrient Cycling in Agroecossystems, 89, 313–328.

    Article  CAS  Google Scholar 

  • Liu, Z., Yang, X., Hubbard, K. G., & Lin, X. (2012). Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology, 18, 3441–3454.

    Article  Google Scholar 

  • Lopez, J. R., Erickson, J. E., Asseng, S., & Bobeda, E. L. (2017). Modification of the CERES grain sorghum model to simulate optimum sweet sorghumrooting depth for rainfed production oc coarse textured soils in a sub-tropical environment. Agricultural Water Management,181, 47–55.

    Article  Google Scholar 

  • Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rotter, R. P., et al. (2014). Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology,21, 911–925.

    Article  PubMed  Google Scholar 

  • Monteiro, L. A. (2015). Sugarcane yield gap in Brazil: a crop modeling approach. University of São Paulo. PhD. Thesis.

  • Monteiro, J. E. B. A., Assad, E. D., Sentelhas, P. C., & Azevedo, L. C. (2017). Modeling of corn yield in Brazil as a function of meteorological conditions and technological level. Pesquisa Agropecuaria Brasileira,52, 137–148.

    Article  Google Scholar 

  • Monteiro, L. A., & Sentelhas, P. C. (2017). Sugarcane yield gap: can it be determined at national level with a simple agrometeorological model? Crop & Pasture Science,68, 272–284.

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B,281, 277–294.

    Google Scholar 

  • Negm, L. M., Youssef, M. A., & Jaynes, D. B. (2017). Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa. Agricultural Water Management,187, 57–68.

    Article  Google Scholar 

  • Palosuo, T., Kersebaum, K. C., Angulo, C., Hilavinka, P., Moriondo, M., Olesen, J. E., et al. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison, of eight crop growth models. European Journal Agronomy,35, 103–114.

    Article  Google Scholar 

  • Peak, A. S., Robertson, M. J., & Bidstrup, R. J. (2008). Optimizing maize plant population and irrigation strategies on the Darling Downs using the APSIM crop simulation model. Australian Journal of Experimental Agriculture,48, 313–325.

    Article  Google Scholar 

  • Piccini, G., Ko, J., Marek, T., & Howell, T. (2009). Determination of growth-stage-specific crop coefficients (Kc) of maize and sorghum. Agricultural Water Management,96, 1698–1704.

    Article  Google Scholar 

  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evapotranspiration, using large scale parameters. Monthly Weather Review,100, 81–92.

    Article  Google Scholar 

  • Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org. (2019).

  • Raes, D., Geerts, S., Kipkorir, E., Wellens, J., & Shali, A. (2006). Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management,81, 335–357.

    Article  Google Scholar 

  • R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research,8, 1204–1213.

    Article  Google Scholar 

  • Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., et al. (2013). The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agricultual and Forest Meteorology,170, 166–182.

    Article  Google Scholar 

  • Sentelhas, P. C., Battisti, R., Câmara, G. M. S., Farias, J. R. B., Hampf, A. C., & Nendel, C. (2015). The soybean yield gap in Brazil—magnitude, causes and possible solutions for suitainable production. Journal of Agriculture and Science,158, 1394–1411.

    Article  Google Scholar 

  • Shioga, P. S., Gerage, A. C., Araújo, P. M., Bianco, R. (2012). Avaliação estadual de cultivares de milho segunda safra 2012. IAPAR Technical Bulletin nº78, 7-114.

  • Shioga, P. S., Gerage, A. C., Araújo, P. M., Sera, G. H. (2010). Avaliação estadual de cultivares de milho safra 2009/2010. IAPAR Technical Bulletin no. 69, 7–112.

  • Shrestha, S., Champagain, R., & Babel, M. S. (2017). Quantifying the impact of climate change on crop yield and water footprint on rice in the Nam Oon irrigation Project, Thailand. Science of the Total Environmet,599–600, 689–699.

    Article  CAS  Google Scholar 

  • Singh, P. K., Singh, K. K., Bhan, S. C., Baxla, A. K., Singh, S., Rathore, L. S., et al. (2017). Impact of projected climat change on rice (Oryza sativa L.) yield using CERES-rice model in a diferente agroclimatic zones of India. Current Science,112, 108–115.

    Article  Google Scholar 

  • Soler, C. M. T., Sentelhas, P. C., & Hoogenboon, G. (2010). The impact of El Niño Southern Oscillation phases on off-season maize yield for a subtropical region of Brazil. International Journal of Climatology,30, 1056–1066.

    Google Scholar 

  • Souza, R. F., Barros, A. C., Barros, A. H. C., & Tabosa, J. N. (2014). Estimates for maize yield (Zea mays L.) in rainfed and irrigated crops determined by the method of Agroecological Zone/FAO (MZA/FAO), state of Alagoas. Brazil. Revista Brasileira de Agricultura Irrigada,8, 127–138.

    Article  Google Scholar 

  • Steduto, P., Hsiao, T. C., Fereres, E., Raes, D. (2012). Crop yield response to water. Rome, FAO (Irrigation and Drainage Paper 66).

  • Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Publications in Climatology. New Jersey: Drexel Institute of Technology.

    Google Scholar 

  • Wallach, D., Mearns, L. O., Ruane, A. C., Rotter, R. P., & Asseng, S. (2016). Lessons for climate modeling on the design and use of ensembles for crop modeling. Climatic Change,139, 551–564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Wang, E., Yang, X., Zhang, F., & Yin, H. (2012). Increased yield potential of wheat-maize cropping system in the north China plain by climate change adaptation. Climatic Change,113, 825–840.

    Article  Google Scholar 

  • Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194.

    Article  Google Scholar 

  • Xavier, A. C., King, C. W., & Scanlon, B. R. (2016). Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatolology,36, 2644–2659. https://doi.org/10.1002/joc.4518.

    Article  Google Scholar 

  • Yin, X., Kersebaumb, K. C., Kollas, C., Manevskia, K., Baby, S., Beaudoin, N., et al. (2017). Performance of process-based models for simulation of grain N in crop rotation across Europe. Agricultural Systems,154, 63–77.

    Article  Google Scholar 

  • Zhang, L., Walker, G. R., & Dawes, W. R. (2002). Water balance modeling: concepts and applications. In T. R. Mecvicar, L. Rui, J. Walker, R. W. Fitzpatrick, & L. Changming (Eds.), Regional water and soil assessment for managing sustainable agriculture in China and Australia. Adelaide: CISRO.

    Google Scholar 

  • Zhang, Y. & Zhao, Y. (2017). Ensemble yield simulation: using heat-tolerant and later-maturing varieties to adapt to climate warming. PLos One, 12, e(0176766).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury C. N. Duarte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, Y.C.N., Sentelhas, P.C. Intercomparison and Performance of Maize Crop Models and Their Ensemble for Yield Simulations in Brazil. Int. J. Plant Prod. 14, 127–139 (2020). https://doi.org/10.1007/s42106-019-00073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-019-00073-5

Keywords

Navigation