Skip to main content
Log in

A Review of Benchmark Experiments for the Validation of Peridynamics Models

  • Reviews
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

Peridynamics (PD), a non-local generalization of classical continuum mechanics (CCM) allowing for discontinuous displacement fields, provides an attractive framework for the modeling and simulation of fracture mechanics applications. However, PD introduces new model parameters, such as the so-called horizon parameter. The length scale of the horizon is a priori unknown and need to be identified. Moreover, the treatment of the boundary conditions is also problematic due to the non-local nature of PD models. It has thus become crucial to calibrate the new PD parameters and assess the model adequacy based on experimental observations. The objective of the present paper is to review and catalog available experimental setups that have been used to date for the calibration and validation of peridynamics. We have identified and analyzed a total of 39 publications that compare PD-based simulation results with experimental data. In particular, we have systematically reported, whenever possible, either the relative error or the R-squared coefficient. The best correlations were obtained in the case of experiments involving aluminum and steel materials. Experiments based on imaging techniques were also considered. However, images provide large amounts of information and their comparison with simulations is in that case far from trivial. A total of six publications have been identified and summarized that introduce numerical techniques for extracting additional attributes from peridynamics simulations in order to facilitate the comparison against image-based data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. https://automeris.io/WebPlotDigitizer/

  2. https://www.scipy.org/

  3. http://graphics.stanford.edu/data/3Dscanrep/

References

  1. Abanto-Bueno J, Lambros J (2006) An experimental study of mixed mode crack initiation and growth in functionally graded materials. Exp Mech 46(2):179–196

    Article  Google Scholar 

  2. Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J Fract 171(1):65

    Article  MATH  Google Scholar 

  3. Amani J, Oterkus E, Areias P, Zi G, Nguyen-Thoi T, Rabczuk T (2016) A non-ordinary state-based peridynamics formulation for thermoplastic fracture. Int J Impact Eng 87(SI):83–94

    Article  Google Scholar 

  4. Anderson CE, Nicholls AE, Chocron IS, Ryckman RA (2006) Taylor anvil impact. AIP Conf Proc 845(1):1367–1370

    Article  Google Scholar 

  5. ASTM International (2000) ASTM E647-00 standard test method for measurement of fatigue crack growth rates

  6. Awerbuch J, Madhukar MS (1985) Notched strength of composite laminates: Predictions and experiments—a review. J Reinf Plast Compos 4(1):3–159

    Article  Google Scholar 

  7. Aziz A (2014) Simulation of fracture of concrete using micropolar peridynamics. Ph.D. thesis, University of New Mexico

  8. Ball A, McKenzie H (1994) On the low velocity impact behaviour of glass plates. J Phys IV 4(C8):C8–783

    Google Scholar 

  9. Boardman B (1990) Fatigue resistance of steels, vol 1

  10. Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of peridynamic modeling. CRC Press, Boca Raton

    MATH  Google Scholar 

  11. Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1d peridynamics. Int J Numer Methods Eng 77(6):852–877

    Article  MATH  Google Scholar 

  12. Bogert P, Satyanarayana A, Chunchu P (2006) Comparison of damage path predictions for composite laminates by explicit and standard finite element analysis tools. In: Collection of technical papers - AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, vol 3

  13. Bouchbinder E, Hentschel HGE, Procaccia I (2003) Dynamical instabilities of quasistatic crack propagation under thermal stress. Phys Rev E 68:036,601

    Article  Google Scholar 

  14. Boudet J, Ciliberto S, Steinberg V (1996) Dynamics of crack propagation in brittle materials. J Phys II 6(10):1493–1516

    Google Scholar 

  15. Bowden F, Brunton J, Field J, Heyes A (1967) Controlled fracture of brittle solids and interruption of electrical current. Nature 216(5110):38–42

    Article  Google Scholar 

  16. Bowden FP, Field JE (1964) The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 282(1390):331–352

    Article  Google Scholar 

  17. Bußler M, Diehl P, Pflüger D, Frey S, Sadlo F, Ertl T, Schweitzer MA (2017) Visualization of fracture progression in peridynamics. Comput Graph 67:45–57

    Article  MATH  Google Scholar 

  18. Butt SN, Timothy JJ, Meschke G (2017) Wave dispersion and propagation in state-based peridynamics. Comput Mech 60(5):725–738

  19. Chapman S (2011) Clariffication of the notched beam level in testing procedures of ACI 446 committee report 5. Master’s thesis, University of New Mexico

  20. Chaudhri MM, Walley SM (1978) Damage to glass surfaces by the impact of small glass and steel spheres. Philos Mag A 37(2):153–165

    Article  Google Scholar 

  21. Chen W, Song B, Frew DJ (2002) 108 split Hopkinson bar testing of an aluminum with pulse shaping. The Proceedings of the JSME Materials and Processing Conference (M&P) 10.1:58–61

    Article  Google Scholar 

  22. Chen W, Zhu F, Zhao J, Li S, Wang G (2017) Peridynamics-based fracture animation for elastoplastic solids. Comput Graph Forum 37(1):112–124

    Article  Google Scholar 

  23. Chen WW, Song B (2011) Mechanical engineering series. In: Split Hopkinson (Kolsky) bar – design, testing and applications, vol 1. Springer, US, p 388

  24. Cheng Z, Zhang G, Wang Y, Bobaru F (2015) A peridynamic model for dynamic fracture in functionally graded materials. Compos Struct 133:529–546

    Article  Google Scholar 

  25. Dally J, Thau S (1967) Observations of stress wave propagation in a half-plane with boundary loading. Int J Solids Struct 3(3):293–308

    Article  Google Scholar 

  26. Devore JL (2012) Probability and statistics for engineering and the sciences, 2nd edn. Springer, New York

    Google Scholar 

  27. Diehl P (2012) Implementierung eines Peridynamik-Verfahrens auf GPU. Diplomarbeit, Institute of Parallel and Distributed Systems, University of Stuttgart

  28. Diehl P (2017) Modeling and simulation of cracks and fractures with peridynamics in brittle materials. Phd. thesis, Institut für Numerische Simulation, Universit ät Bonn

  29. Diehl P, Bußler M, Pflüger D, Frey S, Ertl T, Sadlo F, Schweitzer MA (2017) Extraction of fragments and waves after impact damage in particle-based simulations. In: Meshfree methods for partial differential equations VIII. Springer International Publishing, pp 17–34

  30. Diehl P, Franzelin F, Pflüger D, Ganzenmüller GC (2016) Bond-based peridynamics: a quantitative study of mode i crack opening. Int J Fract 201(2):157–170

    Article  Google Scholar 

  31. Diehl P, Jha PK, Kaiser H, Lipton R, Lévesque M (2018) Implementation of peridynamics utilizing hpx–the c+ + standard library for parallelism and concurrency. arXiv:1806.06917

  32. Diehl P, Lipton R, Schweitzer MA (2016) Numerical verification of a bond-based softening peridynamic model for small displacements: Deducing material parameters from classical linear theory. Tech. rep., Institut für Numerische Simulation

  33. Diehl P, Schweitzer MA (2015) Efficient neighbor search for particle methods on gpus. In: Meshfree methods for partial differential equations VII. Springer, pp 81–95

  34. Diehl P, Schweitzer MA (2015) Simulation of wave propagation and impact damage in brittle materials using peridynamics. In: Recent trends in computational engineering-CE2014. Springer, pp 251–265

  35. Diehl P, Tabiai I, Baumann FW, Therriault D, Lévesque M (2018) Long term availability of raw experimental data in experimental fracture mechanics. Eng Fract Mech 197:21–26

    Article  Google Scholar 

  36. Döll W (1975) Investigations of the crack branching energy. Int J Fract 11(1):184–186

    Article  Google Scholar 

  37. Du Q (2016) Nonlocal calculus of variations and well-posedness of peridynamics. Handbook of Peridynamic Modeling 63–85

  38. Du Q, Tian X (2015) Robust discretization of nonlocal models related to peridynamics. In: Meshfree methods for partial differential equations VII. Springer, pp 97–113

  39. Eran S, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397(6717):333

    Article  Google Scholar 

  40. Field J (1988) Investigation of the impact performance of various glass and ceramic systems. Tech. rep., Cambridge University (United Kingdom) Cavebdish Laboratory

  41. Fineberg J, Gross SP, Marder M, Swinney HL (1992) Instability in the propagation of fast cracks. Phys Rev B 45:5146–5154

    Article  Google Scholar 

  42. Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313(1):1–108

    Article  MathSciNet  Google Scholar 

  43. Foster JT (2009) Dynamic crack initiation toughness: Experiments and peridynamic modeling. Sandia Report SAN D2009-7217, Sandia National Laboratories

  44. Foster JT, Silling SA, Chen WW (2009) State based peridynamic modeling of dynamic fracture. In: Annual conference and exposition on experimental and applied mechanics 2009 society for experimental mechanics - SEM, vol 4, pp 2312–2317

  45. Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10):1242–1258

    MATH  Google Scholar 

  46. Frew DJ, Forrestal MJ, Chen W (2005) Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar. Exp Mech 45(2):186

    Article  Google Scholar 

  47. Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An effective way to couple fem meshes and peridynamics grids for the solution of static equilibrium problems. Mech Res Commun 76:41–47

    Article  Google Scholar 

  48. Gerstle W, Sakhavand N, Chapman S (2010) Peridynamic and continuum models of reinforced concrete lap splice compared. fracture mechanics of concrete and concrete structures-recent advances in fracture mechanics of concrete

  49. Gözen I, Dommersnes P, Czolkos I, Jesorka A, Lobovkina T, Orwar O (2010) Fractal avalanche ruptures in biological membranes. Nat Mater 9(11):908

    Article  Google Scholar 

  50. Gu X, Madenci E, Zhang Q (2018) Revisit of non-ordinary state-based peridynamics. Eng Fract Mech 190:31–52

    Article  Google Scholar 

  51. Gu X, Wu Q (2016) The application of nonordinary, state-based peridynamic theory on the damage process of the rock-like materials. Math Probl Eng 2016, 9 pp

  52. Gu X, Zhang Q, Xia X (2017) Voronoi-based peridynamics and cracking analysis with adaptive refinement. Int J Numer Methods Eng 112(13):2087–2109

    Article  MathSciNet  Google Scholar 

  53. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1):229–244

    Article  MATH  Google Scholar 

  54. Haeri H, Shahriar K, Marji MF, Moarefvand P (2014) Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. Int J Rock Mech Min Sci 67:20–28

    Article  Google Scholar 

  55. Han F, Lubineau G (2012) Coupling of nonlocal and local continuum models by the arlequin approach. Int J Numer Methods Eng 89(6):671–685

    Article  MathSciNet  MATH  Google Scholar 

  56. Heller T, Diehl P, Byerly Z, Biddiscombe J, Kaiser H (2017) Hpx–an open source c+ + standard library for parallelism and concurrency

  57. Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character 213(497–508):437–456

    Google Scholar 

  58. Hu W, Ha YD, Bobaru F (2011) Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. Int J Multiscale Comput Eng 9(6)

  59. Hu W, Wang Y, Yu J, Yen CF, Bobaru F (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165

    Article  Google Scholar 

  60. Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  61. Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M (2014) SPH fluids in computer graphics. In: Lefebvre S, Spagnuolo M (eds) Eurographics 2014 - state of the art reports. The Eurographics association

  62. International Organization for Standardization (2003) Corrosion of metals and alloys - stress corrosion testing - part 6: Preparation and use of pre-cracked specimens for tests under constant load or constant displacement

  63. Jenq YS, Shah SP (1988) Mixed-mode fracture of concrete. Int J Fract 38(2):123–142

    Google Scholar 

  64. Jia T (2012) Development and applications of new peridynamic models. Ph.D. thesis, Michigan State University

  65. Jose S, Kumar RR, Jana M, Rao GV (2001) Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates. Compos Sci Technol 61(8):1115–1122

    Article  Google Scholar 

  66. Kalthoff JF (1988) Shadow optical analysis of dynamic shear fracture. Opt Eng 27(10):271,035

    Article  Google Scholar 

  67. Kalthoff JF (2000) Modes of dynamic shear failure in solids. Int J Fract 101(1):1–31

    Article  Google Scholar 

  68. Kalthoff JF, Winkler S (1988) Failure mode transition at high rates of shear loading. Impact Loading and Dynamic Behavior of Materials 1:185–195

    Google Scholar 

  69. Kawai M, Morishita M, Satoh H, Tomura S, Kemmochi K (1997) Effects of end-tab shape on strain field of unidirectional carbon/epoxy composite specimens subjected to off-axis tension. Compos A: Appl Sci Manuf 28(3):267–275

    Article  Google Scholar 

  70. Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90(2):141–151

    Article  Google Scholar 

  71. Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2):165–177

    Article  MATH  Google Scholar 

  72. Kilic B, Madenci E (2010) Coupling of peridynamic theory and the finite element method. J Mech Mater Struct 5(5):707–733

    Article  Google Scholar 

  73. Kirugulige M, Tippur HV (2008) Mixed-mode dynamic crack growth in a functionally graded particulate composite: experimental measurements and finite element simulations. J Appl Mech 75(5):051,102

    Article  Google Scholar 

  74. Kirugulige MS, Tippur HV (2006) Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Exp Mech 46(2):269–281

    Article  Google Scholar 

  75. Kitey R, Tippur HV (2008) Dynamic crack growth past a stiff inclusion: optical investigation of inclusion eccentricity and inclusion-matrix adhesion strength. Exp Mech 48(1):37–53

    Article  Google Scholar 

  76. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676

    Article  Google Scholar 

  77. Kumar S, Singh I, Mishra B (2014) A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials. Theor Appl Fract Mech 70(Supplement C):49–58

    Article  Google Scholar 

  78. Levine JA, Bargteil AW, Corsi C, Tessendorf J, Geist R (2014) A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’14. Eurographics association, pp 47–55

  79. Littlewood D, Silling S, Demmie P (2016) Identification of fragments in a meshfree peridynamic simulation. In: ASME 2016 international mechanical engineering congress and exposition. American society of mechanical engineers, pp V009T12A071–V009T12A071

  80. Littlewood DJ (2015) Roadmap for Peridynamic Software Implementation. Tech Rep 2015-9013, Sandia National Laboratories

  81. Liu M, Wang Q, Lu W (2017) Peridynamic simulation of brittle-ice crushed by a vertical structure. Int J Naval Architecture Ocean Eng 9(2):209–218

    Article  Google Scholar 

  82. Liu W, Hong JW (2012) A coupling approach of discretized peridynamics with finite element method. Comput Methods Appl Mech Eng 245:163–175

    Article  MathSciNet  MATH  Google Scholar 

  83. Lu J, Zhang Y, Muhammad H, Chen Z (2018) Peridynamic model for the numerical simulation of anchor bolt pullout in concrete. Math Probl Eng 2018:1–10

    Google Scholar 

  84. Madenci E, Barut A, Dorduncu M, Phan ND (2018) Coupling of peridynamics with finite elements without an overlap zone. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1462

  85. Madenci E, Dorduncu M, Barut A, Phan N (2018) A state-based peridynamic analysis in a finite element framework. Eng Fract Mech 195:104–128

    Article  Google Scholar 

  86. Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631

    Article  MathSciNet  Google Scholar 

  87. Madenci E, Oterkus E (2014) Peridynamic theory and its applications, vol 17. Springer, New York

    Book  MATH  Google Scholar 

  88. Madenci E, Oterkus E (2014) Peridynamic theory and its applications, chap 2 peridynamic theory, vol 17. Springer, Berlin, pp 19–43

    Book  MATH  Google Scholar 

  89. Mahanty D, Maiti S (1990) Experimental and finite element studies on mode I and mixed mode (I and II) stable crack growth—I. Exp Eng Fracture Mech 37(6):1237–1250

    Article  Google Scholar 

  90. McCauley J, Strassburger E, Patel P, Paliwal B, Ramesh K (2013) Experimental observations on dynamic response of selected transparent armor materials. Exp Mech 53(1):3–29

    Article  Google Scholar 

  91. Miranda A, Meggiolaro M, Castro J, Martha L, Bittencourt T (2003) Fatigue life and crack path predictions in generic 2d structural components. Eng Fract Mech 70(10):1259–1279

    Article  Google Scholar 

  92. Mossaiby F, Shojaei A, Zaccariotto M, Galvanetto U (2017) Opencl implementation of a high performance 3d peridynamic model on graphics accelerators. Comput Math Appl 74(8): 1856–1870

    Article  MathSciNet  MATH  Google Scholar 

  93. Nishawala VV, Ostoja-Starzewski M, Leamy MJ, Demmie PN (2016) Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments. Wave Motion 60:73–83

    Article  MathSciNet  MATH  Google Scholar 

  94. Ocaña I, Molina-Aldareguia J, Gonzalez D, Elizalde M, Sánchez J, Martĩnez-Esnaola J, Sevillano JG, Scherban T, Pantuso D, Sun B (2006) Fracture characterization in patterned thin films by cross-sectional nanoindentation. Acta Mater 54(13):3453–3462

    Article  Google Scholar 

  95. Oterkus E, Agwai A, Guven I, Madenci E (2009) Peridynamic theory for simulation of failure mechanisms in electronic packages. In: ASME 2009 InterPACK Conference collocated with the ASME 2009 summer heat transfer conference and the ASME 2009 3rd international conference on energy sustainability. American Society of Mechanical Engineers, pp 63–68

  96. Oterkus E, Barut A, Madenci E (2010) Damage growth prediction from loaded composite fastener holes by using peridynamic theory. In: Collection of technical papers - AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, pp 1–14

  97. Parks M, Littlewood D, Mitchell J, Silling S (2012) Peridigm users’ guide. Tech Rep SAND2012-7800, Sandia National Laboratories

  98. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11):777–783

    Article  MATH  Google Scholar 

  99. Pharr M, Jakob W, Humphreys G (2016) Physically based rendering: from theory to implementation, 3rd edn. Morgan Kaufmann, San Mateo

    Google Scholar 

  100. Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branching — a dynamic fracture analysis. Int J Fract 27(3):187–201

    Article  Google Scholar 

  101. Raymond S, Lemiale V, Ibrahim R, Lau R (2014) A meshfree study of the Kalthoff–Winkler experiment in 3D at room and low temperatures under dynamic loading using viscoplastic modelling. Engineering Analysis with Boundary Elements 42:20–25

    Article  MathSciNet  MATH  Google Scholar 

  102. Ronsin O, Perrin B (1997) Multi-fracture propagation in a directional crack growth experiment. EPL (Europhysics Letters) 38(6):435

    Article  Google Scholar 

  103. Ronsin O, Perrin B (1998) Dynamics of quasistatic directional crack growth. Phys Rev E 58:7878–7886

    Article  Google Scholar 

  104. Rosenfeld A, Pfaltz JL (1966) Sequential operations in digital picture processing. J ACM 13(4):471–494

    Article  MATH  Google Scholar 

  105. Sanchez J, El-Mansy S, Sun B, Scherban T, Fang N, Pantuso D, Ford W, Elizalde M, Martınez-Esnaola J, Martın-Meizoso A et al (1999) Cross-sectional nanoindentation: a new technique for thin film interfacial adhesion characterization. Acta Materialia 47(17):4405–4413

    Article  Google Scholar 

  106. Satyanarayana A, Bogert P, Chunchu P (2017) The effect of delamination on damage path and failure load prediction for notched composite laminates. In: 48th AIAA/ASME/ ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1993

  107. Schram S, Meyer H (2005) Simulating the formation and evolution of behind armor debris fields. ARL-RP 109, US Army Research Laboratory

  108. Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49

    Article  Google Scholar 

  109. Seleson P, Ha YD, Beneddine S (2015) Concurrent coupling of bond-based peridynamics and the navier equation of classical elasticity by blending. Int J Multiscale Comput Eng 13(2)

  110. Shapiro LG (1996) Connected component labeling and adjacency graph construction. In: Kong TY, Rosenfeld A (eds) Topological algorithms for digital image processing, machine intelligence and pattern recognition, vol 19. North-Holland, pp 1–30

  111. Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A coupled meshless finite point/peridynamic method for 2d dynamic fracture analysis. Int J Mech Sci 119:419–431

    Article  Google Scholar 

  112. SIERRA Solid Mechanics Team (2016) Sierra/SolidMechanics 4.40 User’s Guide. Tech. Rep. SAND2016-2707 O, Sandia National Laboratories, Albuquerque, NM and Livermore, CA

  113. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  114. Silling SA (2002) Peridynamic modeling of the Kalthoff-Winkler experiment submission for the 2001 Sandia prize in computational science

  115. Silling SA (2011) A coarsening method for linear peridynamics. Int J Multiscale Comput Eng 9(6):609–622

    Article  Google Scholar 

  116. Silling SA (2016) Why peridynamics? Handbook of Peridynamic Modeling: 1

  117. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17):1526–1535

    Article  Google Scholar 

  118. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  119. Sodhi DS, Morris CE (1986) Characteristic frequency of force variations in continuous crushing of sheet ice against rigid cylindrical structures. Cold Reg Sci Technol 12(1):1–12

    Article  Google Scholar 

  120. Starikov R, Schön J (2002) Local fatigue behaviour of cfrp bolted joints. Compos Sci Technol 62(2):243–253

    Article  Google Scholar 

  121. Strassburger E (2004) Visualization of impact damage in ceramics using the edge-on impact technique. Int J Appl Ceram Technol 1:235–242

    Article  Google Scholar 

  122. Strassburger E, Patel P, McCauley JW, Tempelton DW (2005) Visualization of wave propagation and impact damage in a polycrystalline transparent ceramic - AlON. In: 22nd international symposium on ballistics, vol 2, pp 769–776

  123. Strassburger E, Patel P, McCauley JW, Templeton DW (2006) High-speed photographic study of wave propagation and iimpact damage in fused silcia and alon using the edge-on impact (EOI) method. AIP Conf Proc 845:892–895

    Article  Google Scholar 

  124. Tabiai I (2017) PMMA tensile test until failure, loaded in force.

  125. Taylor M, Gözen I, Patel S, Jesorka A, Bertoldi K (2016) Peridynamic modeling of ruptures in biomembranes. PloS one 11(11):e0165, 947

    Article  Google Scholar 

  126. Tian X, Du Q (2014) Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J Numer Anal 52(4):1641–1665

    Article  MathSciNet  MATH  Google Scholar 

  127. Tupek M, Rimoli J, Radovitzky R (2013) An approach for incorporating classical continuum damage models in state-based peridynamics. Comput Methods Appl Mech Eng 263:20–26

    Article  MathSciNet  MATH  Google Scholar 

  128. Vervuurt A, Van Mier JG, Schlangen E (1994) Analyses of anchor pull-out in concrete. Mater Struct 27(5):251–259

    Article  Google Scholar 

  129. Vogler TJ, Thornhill TF, Reinhart WD, Chhabildas LC, Grady DE, Wilson LT, Hurricane OA, Sunwoo A (2003) Fragmentation of materials in expanding tube experiments. Int J Impact Eng 29(1–10):735–746

    Article  Google Scholar 

  130. Wang Y (2015) Peridynamic studies of interactions between stress waves and propagating cracks in brittle solids. Ph.D. thesis, University of Nebraska

  131. Weng T, Sun C (2000) A study of fracture criteria for ductile materials. Eng Fail Anal 7(2):101–125

    Article  Google Scholar 

  132. Wetzel JJ (2009) The impulse response of extruded corrugated core aluminum sandwich structures. Master’s thesis, University of Virginia

  133. Winkler KW (1983) Frequency dependent ultrasonic properties of high-porosity sandstones. J Geophys Res Solid Earth 88(B11):9493–9499

    Article  Google Scholar 

  134. Wu E (1967) Application of fracture mechanics to anisotropic plates. Trans ASME J Appl Mech 34(4):967–974

    Article  MathSciNet  Google Scholar 

  135. Yolum U, Taştan A, Güler MA (2016) A peridynamic model for ductile fracture of moderately thick plates. Procedia Structural Integrity 2:3713–3720

    Article  Google Scholar 

  136. Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plates. Nature 362(6418):329–331

    Article  Google Scholar 

  137. Yuse A, Sano M (1997) Instabilities of quasi-static crack patterns in quenched glass plates. Physica D: Nonlinear Phenomena 108(4):365–378

    Article  Google Scholar 

  138. Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of fem meshes with peridynamic grids. Comput Methods Appl Mech Eng 330:471–497

    Article  MathSciNet  Google Scholar 

  139. Zaccariotto M, Tomasi D, Galvanetto U (2017) An enhanced coupling of pd grids to fe meshes. Mech Res Commun 84:125–135

    Article  Google Scholar 

  140. Zhang F, Wu J, Shen X (2011) SPH-based fluid simulation: a survey. In: Proceedings - 2011 international conference on virtual reality and visualization, ICVRV 2011, pp 164–171

  141. Zhang G (2017) Peridynamic models for fatigue and fracture in isotropic and in polycrystalline materials. Ph.D. thesis, University of Nebraska

  142. Zhang G, Bobaru F (2016) Modeling The Evolution of Fatigue Failure with Peridynamics. In: Ro J Techn Sci – Appl Mechanics, vol 1, pp 22–40

  143. Zhang JJ, Bentley LR (1999) Change of bulk and shear moduli of dry sandstone with effective pressure and temperature. CREWES Research Report 11:01–16

    Google Scholar 

  144. Zhou X, Wang Y, Qian Q (2016) Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. Eur J Mech A Solids 60:277–299

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Diehl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, P., Prudhomme, S. & Lévesque, M. A Review of Benchmark Experiments for the Validation of Peridynamics Models. J Peridyn Nonlocal Model 1, 14–35 (2019). https://doi.org/10.1007/s42102-018-0004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-018-0004-x

Keywords

Navigation