Skip to main content
Log in

Multivariate transformed Gaussian processes

  • Original Paper
  • Spatial statistics
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

We set up a general framework for modeling non-Gaussian multivariate stochastic processes by transforming underlying multivariate Gaussian processes. This general framework includes multivariate spatial random fields, multivariate time series, and multivariate spatio-temporal processes, whereas the respective univariate processes can also be seen as special cases. We advocate joint modeling of the transformation and the cross-/auto-correlation structure of the latent multivariate Gaussian process, for better estimation and prediction performance. We provide two useful models, the Tukey g-and-h transformed vector autoregressive model and the sinh-arcsinh-transformed multivariate Matérn random field. We evaluate them with a simulation study. Finally, we apply the two models to a wind data set for modeling the two perpendicular components of wind speed vectors. Both the simulation study and data analysis show the advantages of the joint modeling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apanasovich, T. V., Genton, M. G., & Sun, Y. (2012). A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components. Journal of the American Statistical Association, 107(497), 180–193.

    MathSciNet  MATH  Google Scholar 

  • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12(2), 171–178.

    MathSciNet  MATH  Google Scholar 

  • Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83(4), 715–726.

    MathSciNet  MATH  Google Scholar 

  • Bai, J., & Ng, S. (2005). Tests for skewness, kurtosis, and normality for time series data. Journal of Business & Economic Statistics, 23(1), 49–60.

    MathSciNet  Google Scholar 

  • Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data. Boca Raton, FL: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Benjamin, M. A., Rigby, R. A., & Stasinopoulos, D. M. (2003). Generalized autoregressive moving average models. Journal of the American Statistical Association, 98(461), 214–223.

    MathSciNet  MATH  Google Scholar 

  • Block, H. W., Langberg, N. A., & Stoffer, D. S. (1990). Time series models for non-Gaussian processes. Lecture Notes-Monograph Series, 16, 69–83.

    MathSciNet  MATH  Google Scholar 

  • Bolin, D., Wallin, J., & Lindgren, F. (2019). Latent gaussian random field mixture models. Computational Statistics & Data Analysis, 130, 80–93.

    MathSciNet  MATH  Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society Series B (Methodological), 26(2), 211–252.

    MathSciNet  MATH  Google Scholar 

  • Bradley, J. R., Holan, S. H., & Wikle, C. K. (2019). Bayesian hierarchical models with conjugate full-conditional distributions for dependent data from the natural exponential family. Journal of the American Statistical Association. (To appear).

  • Chagneau, P., Mortier, F., Picard, N., & Bacro, J. N. (2011). A hierarchical Bayesian model for spatial prediction of multivariate non-Gaussian random fields. Biometrics, 67(1), 97–105.

    MathSciNet  MATH  Google Scholar 

  • Cordeiro, G. M., & de Andrade, M. G. (2009). Transformed generalized linear models. Journal of Statistical Planning and Inference, 139(9), 2970–2987.

    MathSciNet  MATH  Google Scholar 

  • Cressie, N. (1993). Statistics for spatial data. New York: Wiley.

    MATH  Google Scholar 

  • Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal data. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Cressie, N., & Zammit-Mangion, A. (2016). Multivariate spatial covariance models: A conditional approach. Biometrika, 103(4), 915–935.

    MathSciNet  MATH  Google Scholar 

  • Davies, N., Spedding, T., & Watson, W. (1980). Autoregressive moving average processes with non-normal residuals. Journal of Time Series Analysis, 1(2), 103–109.

    Google Scholar 

  • De Oliveira, V. (2006). On optimal point and block prediction in log-Gaussian random fields. Scandinavian Journal of Statistics, 33(3), 523–540.

    MathSciNet  Google Scholar 

  • De Oliveira, V., Kedem, B., & Short, D. A. (1997). Bayesian prediction of transformed Gaussian random fields. Journal of the American Statistical Association, 92(440), 1422–1433.

    MathSciNet  MATH  Google Scholar 

  • Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-based geostatistics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(3), 299–350.

    MathSciNet  MATH  Google Scholar 

  • Du, J., Leonenko, N., Ma, C., & Shu, H. (2012). Hyperbolic vector random fields with hyperbolic direct and cross covariance functions. Stochastic Analysis and Applications, 30(4), 662–674.

    MathSciNet  MATH  Google Scholar 

  • Dutta, K., & Babbel, D. (2002). On measuring skewness and kurtosis in short rate distributions: The case of the US dollar London inter bank offer rates. Technical report, The Wharton School, University of Pennsylvania.

  • Field, C. (2004). Using the \(gh\) distribution to model extreme wind speeds. Journal of Statistical Planning and Inference, 122(1), 15–22.

    MathSciNet  MATH  Google Scholar 

  • Field, C., & Genton, M. G. (2006). The multivariate \(g\)-and-\(h\) distribution. Technometrics, 48(1), 104–111.

    MathSciNet  Google Scholar 

  • Fonseca, T. C. O., & Steel, M. F. J. (2011). Non-Gaussian spatiotemporal modelling through scale mixing. Biometrika, 98(4), 761–774.

    MathSciNet  MATH  Google Scholar 

  • Gaver, D. P., & Lewis, P. A. W. (1980). First-order autoregressive gamma sequences and point processes. Advances in Applied Probability, 12(3), 727–745.

    MathSciNet  MATH  Google Scholar 

  • Genton, M. G. (2004). Skew-elliptical distributions and their applications: A journey beyond normality. Boca Raton, FL: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Genton, M. G., & Kleiber, W. (2015). Cross-covariance functions for multivariate geostatistics. Statistical Science, 30(2), 147–163.

    MathSciNet  MATH  Google Scholar 

  • Genton, M. G., & Zhang, H. (2012). Identifiability problems in some non-Gaussian spatial random fields. Chilean Journal of Statistics, 3(2), 171–179.

    MathSciNet  MATH  Google Scholar 

  • Gneiting, T., Kleiber, W., & Schlather, M. (2010). Matérn cross-covariance functions for multivariate random fields. Journal of the American Statistical Association, 105(491), 1167–1177.

    MathSciNet  MATH  Google Scholar 

  • Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378.

    MathSciNet  MATH  Google Scholar 

  • Gotway, C. A., & Stroup, W. W. (1997). A generalized linear model approach to spatial data analysis and prediction. Journal of Agricultural, Biological, and Environmental Statistics, 2(2), 157–178.

    MathSciNet  Google Scholar 

  • Gräler, B. (2014). Modelling skewed spatial random fields through the spatial vine copula. Spatial Statistics, 10, 87–102.

    MathSciNet  Google Scholar 

  • Griewank, A., & Walther, A. (2008). Evaluating derivatives: Principles and techniques of algorithmic differentiation (2nd ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • He, Y., & Raghunathan, T. E. (2012). Multiple imputation using multivariate \(gh\) transformations. Journal of Applied Statistics, 39(10), 2177–2198.

    MathSciNet  MATH  Google Scholar 

  • Heaton, M. J., Datta, A., Finley, A. O., Furrer, R., Guinness, J., Guhaniyogi, R., et al. (2019). A case study competition among methods for analyzing large spatial data. Journal of Agricultural, Biological and Environmental Statistics, 24(3), 398–425.

    MathSciNet  MATH  Google Scholar 

  • Hoaglin, D. C. (1985). Summarizing shape numerically: The \(g\)-and-\(h\) distributions. In D. Hoaglin, F. Mosteller, & J. Tukey (Eds.), Exploring data tables, trends, and shapes, chapter 11 (pp. 461–513). New York: Wiley.

    Google Scholar 

  • Jeong, J., Yan, Y., Castruccio, S., & Genton, M. G. (2019). A stochastic generator of global monthly wind energy with Tukey \(g\)-and-\(h\) autoregressive processes. Statistica Sinica, 19, 1105–1126.

    MathSciNet  MATH  Google Scholar 

  • Johns, C. J., Nychka, D., Kittel, T. G. F., & Daly, C. (2003). Infilling sparse records of spatial fields. Journal of the American Statistical Association, 98(464), 796–806.

    MathSciNet  Google Scholar 

  • Jones, M. C. (2015). On families of distributions with shape parameters. International Statistical Review, 83(2), 175–192.

    MathSciNet  Google Scholar 

  • Jones, M. C., & Pewsey, A. (2009). Sinh–arcsinh distributions. Biometrika, 96(4), 761–780.

    MathSciNet  MATH  Google Scholar 

  • Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. (2015). The community earth system model (cesm) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 96(8), 1333–1349.

    Google Scholar 

  • Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic differentiation and Laplace approximation. Journal of Statistical Software, 70(5), 1–21.

    Google Scholar 

  • Krupskii, P., Huser, R., & Genton, M. G. (2018). Factor copula models for replicated spatial data. Journal of the American Statistical Association, 113(521), 467–479.

    MathSciNet  MATH  Google Scholar 

  • Lawrance, A. J., & Lewis, P. A. W. (1980). The exponential autoregressive-moving average EARMA (\(p, q\)) process. Journal of the Royal Statistical Society Series B (Methodological), 42(2), 150–161.

    MathSciNet  MATH  Google Scholar 

  • Le, N. D., Martin, R. D., & Raftery, A. E. (1996). Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models. Journal of the American Statistical Association, 91(436), 1504–1515.

    MathSciNet  MATH  Google Scholar 

  • Li, W. K., & McLeod, A. I. (1988). ARMA modelling with non-Gaussian innovations. Journal of Time Series Analysis, 9(2), 155–168.

    MathSciNet  MATH  Google Scholar 

  • Lo, M. C., & Zivot, E. (2001). Threshold cointegration and nonlinear adjustment to the law of one price. Macroeconomic Dynamics, 5(4), 533–576.

    MATH  Google Scholar 

  • Lütkepohl, H. (2007). New introduction to multiple time series analysis. Berlin: Springer.

    MATH  Google Scholar 

  • Ma, C. (2009). Construction of non-Gaussian random fields with any given correlation structure. Journal of Statistical Planning and Inference, 139, 780–787.

    MathSciNet  MATH  Google Scholar 

  • Ma, C. (2010). \(\chi ^2\) random fields in space and time. IEEE Transactions on Communications, 58(1), 378–383.

    MathSciNet  MATH  Google Scholar 

  • Ma, C. (2011). Covariance matrix functions of vector \(\chi ^2\) random fields in space and time. IEEE Transactions on Communications, 59(9), 2554–2561.

    Google Scholar 

  • Ma, C. (2013). K-distributed vector random fields in space and time. Statistics & Probability Letters, 83(4), 1143–1150.

    MathSciNet  MATH  Google Scholar 

  • Marchenko, Y. V., & Genton, M. G. (2010). Multivariate log-skew-elliptical distributions with applications to precipitation data. Environmetrics, 21(3–4), 318–340.

    MathSciNet  Google Scholar 

  • Martinez, J., & Iglewicz, B. (1984). Some properties of the Tukey \(g\) and \(h\) family of distributions. Communications in Statistics-Theory and Methods, 13(3), 353–369.

    MathSciNet  MATH  Google Scholar 

  • Myers, D. E. (1982). Matrix formulation of co-kriging. Journal of the International Association for Mathematical Geology, 14(3), 249–257.

    MathSciNet  Google Scholar 

  • Palacios, M. B., & Steel, M. F. J. (2006). Non-Gaussian Bayesian geostatistical modeling. Journal of the American Statistical Association, 101(474), 604–618.

    MathSciNet  MATH  Google Scholar 

  • R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Rimstad, K., & Omre, H. (2014). Skew-Gaussian random fields. Spatial Statistics, 10, 43–62.

    MathSciNet  Google Scholar 

  • Royle, J. A., & Berliner, L. M. (1999). A hierarchical approach to multivariate spatial modeling and prediction. Journal of Agricultural, Biological, and Environmental Statistics, 4(1), 29–56.

    MathSciNet  Google Scholar 

  • Shumway, R. H., & Stoffer, D. S. (2011). Time series analysis and its applications: With R Examples. New York: Springer.

    MATH  Google Scholar 

  • Snelson, E., Ghahramani, Z., & Rasmussen, C. E. (2004). Warped Gaussian processes. In S. Thrun, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16, pp. 337–344). Cambridge: MIT Press.

    Google Scholar 

  • Sun, Y., Li, B., & Genton, M. G. (2012). Geostatistics for large datasets. In E. Porcu, J. M. Montero, & M. Schlather (Eds.), Advances and challenges in space-time modelling of natural events (pp. 55–77). Berlin: Springer.

    Google Scholar 

  • Tarami, B., & Pourahmadi, M. (2003). Multi-variate t autoregressions: Innovations, prediction variances and exact likelihood equations. Journal of Time Series Analysis, 24(6), 739–754.

    MathSciNet  MATH  Google Scholar 

  • Tukey, J. (1977). Modern techniques in data analysis. North Dartmouth, MA: In NSF-sponsored regional research conference at Southeastern Massachusetts University.

  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5–31.

    Google Scholar 

  • Vio, R., Andreani, P., Tenorio, L., & Wamsteker, W. (2002). Numerical simulation of non-Gaussian random fields with prescribed marginal distributions and cross-correlation structure. II. Multivariate random fields. Publications of the Astronomical Society of the Pacific, 114(801), 1281–1289.

    Google Scholar 

  • Vio, R., Andreani, P., & Wamsteker, W. (2001). Numerical simulation of non-Gaussian random fields with prescribed correlation structure. Publications of the Astronomical Society of the Pacific, 113, 1009–1020.

    Google Scholar 

  • Wackernagel, H. (2013). Multivariate geostatistics: An introduction with applications. Berlin: Springer.

    MATH  Google Scholar 

  • Wallin, J., & Bolin, D. (2015). Geostatistical modelling using non-Gaussian Matérn fields. Scandinavian Journal of Statistics, 42(3), 872–890.

    MathSciNet  MATH  Google Scholar 

  • Wikle, C. K., Zammit-Mangion, A., & Cressie, N. (2019). Spatio-temporal statistics with R. Boca Raton: CRC Press.

    Google Scholar 

  • Wong, C. S., Chan, W. S., & Kam, P. L. (2009). A Student \(t\)-mixture autoregressive model with applications to heavy-tailed financial data. Biometrika, 96(3), 751–760.

    MathSciNet  MATH  Google Scholar 

  • Wong, C. S., & Li, W. K. (2000). On a mixture autoregressive model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(1), 95–115.

    MathSciNet  MATH  Google Scholar 

  • Xu, G., & Genton, M. G. (2015). Efficient maximum approximated likelihood inference for Tukey’s \(g\)-and-\(h\) distribution. Computational Statistics & Data Analysis, 91, 78–91.

    MathSciNet  MATH  Google Scholar 

  • Xu, G., & Genton, M. G. (2017). Tukey \(g\)-and-\(h\) random fields. Journal of the American Statistical Association, 112, 1236–1249.

    MathSciNet  Google Scholar 

  • Yan, Y., & Genton, M. G. (2018). Gaussian likelihood inference on data from trans-Gaussian random fields with Matérn covariance function. Environmetrics, 29, e2458.

    Google Scholar 

  • Yan, Y., & Genton, M. G. (2019a). Non-Gaussian autoregressive processes with Tukey \(g\)-and-\(h\) transformations. Environmetrics, 30, e2503.

    Google Scholar 

  • Yan, Y., & Genton, M. G. (2019b). The Tukey \(g\)-and-\(h\) distribution. Significance, 16(3), 12–13.

    Google Scholar 

  • Yin, J., & Craigmile, P. F. (2018). Heteroscedastic asymmetric spatial processes. Stat, 7, e206.

    MathSciNet  Google Scholar 

  • Zammit-Mangion, A., Cressie, N., & Ganesan, A. L. (2016). Non-gaussian bivariate modelling with application to atmospheric trace-gas inversion. Spatial Statistics, 18, 194–220.

    MathSciNet  Google Scholar 

  • Zhang, H., & El-Shaarawi, A. (2010). On spatial skew-Gaussian processes and applications. Environmetrics, 21, 33–47.

    MathSciNet  Google Scholar 

  • Zhang, Y., & Yeung, D. (2010). Multi-task warped Gaussian process for personalized age estimation. In 2010 IEEE computer society conference on computer vision and pattern recognition (pp. 2622–2629).

Download references

Acknowledgements

This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2018-CRG7-3742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Jeong, J. & Genton, M.G. Multivariate transformed Gaussian processes. Jpn J Stat Data Sci 3, 129–152 (2020). https://doi.org/10.1007/s42081-019-00068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-019-00068-6

Keywords

Navigation