Skip to main content
Log in

Dimensional Splitting Well-Balanced Schemes on Cartesian Mesh for 2D Shallow Water Equations with Variable Topography

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

We present two types of simple algorithms for numerical approximations of the two-dimensional shallow water equations with variable topography by a dimensional splitting approach. The scheme of the first type has two steps and the the one of the second type has three steps of splitting dimensions in each iteration. In each step, the component computation incorporates a well-balanced method on Cartesian mesh in one-dimensional space. Tests show that these schemes provide us with a reasonable accuracy. Furthermore, we also establish the well-balanced property for both types of schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Berthon, C., Chalons, C.: A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations. Math. Comp. 85, 1281–1307 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ambroso, A., Chalons, C., Coquel, F., Galié, T.: Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. Math. Mod. Numer. Anal. 43, 1063–1097 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ambroso, A., Chalons, C., Raviart, P.-A.: A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54, 67–91 (2012)

    Article  MathSciNet  Google Scholar 

  4. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  Google Scholar 

  5. Baudin, M., Coquel, F., Tran, Q.-H.: A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27, 914–936 (2005)

    Article  MathSciNet  Google Scholar 

  6. Botchorishvili, R., Perthame, B., Vasseur, A.: Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comput. 72, 131–157 (2003)

    Article  MathSciNet  Google Scholar 

  7. Botchorishvili, R., Pironneau, O.: Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws. J. Comput. Phys. 187, 391–427 (2003)

    Article  MathSciNet  Google Scholar 

  8. Caleffi, V., Valiani, A.: Well balancing of the SWE schemes for moving-water steady flows. J. Comput. Phys. 342, 85–116 (2017)

    Article  MathSciNet  Google Scholar 

  9. Castro Díaz, M.J., López-García, J.A., Parés, C.: High order exactly well-balanced numerical methods for shallow water systems. J. Comput. Phys. 246, 242–264 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Y., Chertock, A., Herty, M., Kurganov, A., Wu, T.: A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80, 538–554 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chinnayya, A., Le Roux, A.-Y., Seguin, N.: A well-balanced numerical scheme for the approximation of the shallow water equations with topography: the resonance phenomenon. Int. J. Finite 1(4), 33 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Chertock, A., Kurganov, A., Liu, Y.: Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numer. Math. 127, 595–639 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cuong, D.H., Thanh, M.D.: A well-balanced van Leer-type numerical scheme for shallow water equations with variable topography. Adv. Comput. Math. 43, 1197–1225 (2017)

    Article  MathSciNet  Google Scholar 

  14. Cuong, D.H., Thanh, M.D.: A high-resolution van Leer-type scheme for a model of fluid flows in a nozzle with variable cross-section. J. Korean Math. Soc. 54(1), 141–175 (2017)

    Article  MathSciNet  Google Scholar 

  15. Coquel, F., Hérard, J.-M., Saleh, K., Seguin, N.: Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12, 593–600 (2014)

    Article  MathSciNet  Google Scholar 

  16. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609 (2011)

    Article  MathSciNet  Google Scholar 

  18. Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)

    Article  MathSciNet  Google Scholar 

  19. Gallouet, T., Herard, J.-M., Seguin, N.: Some approximate Godunov schemes to compute shallow–water equations with topography. Comput. Fluids 32, 479–513 (2003)

    Article  MathSciNet  Google Scholar 

  20. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996)

    Book  Google Scholar 

  21. Gómez-Bueno, I., Castro, M.J., Parés, C.: High-order well-balanced methods for systems of balance laws: a control-based approach. Appl. Math. Comput. 394, 125820 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  23. Hou, T.Y., LeFloch, P.: Why non-conservative schemes converge to wrong solutions. Error Anal. Math. Comput. 62, 497–530 (1994)

    Article  Google Scholar 

  24. Kröner, D., Thanh, M.D.: Numerical solutions to compressible flows in a nozzle with variable cross-section. SIAM J. Numer. Anal. 43, 796–824 (2005)

    Article  MathSciNet  Google Scholar 

  25. LeFloch, P.G., Thanh, M.D.: The Riemann problem for shallow water equations with discontinuous topography. Commun. Math. Sci. 5, 865–885 (2007)

    Article  MathSciNet  Google Scholar 

  26. LeFloch, P.G., Thanh, M.D.: A Godunov-type method for the shallow water equations with variable topography in the resonant regime. J. Comput. Phys. 230, 7631–7660 (2011)

    Article  MathSciNet  Google Scholar 

  27. Michel-Dansac, V., Berthon, C., Clain, S., Foucher, F.: A well-balanced scheme for the shallowwater equations with topography. Comput. Math. Appl. 72, 568–593 (2016)

    Article  MathSciNet  Google Scholar 

  28. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228, 1071–1115 (2009)

    Article  MathSciNet  Google Scholar 

  29. Saurel, R., Abgrall, R.: A multi-phase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)

    Article  MathSciNet  Google Scholar 

  30. Schwendeman, D.W., Wahle, C.W., Kapila, A.K.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212, 490–526 (2006)

    Article  MathSciNet  Google Scholar 

  31. Tian, B., Toro, E.F., Castro, C.E.: A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput. Fluids 46, 122–132 (2011)

    Article  MathSciNet  Google Scholar 

  32. Thanh, M.D., Fazlul, K., Izani, A.: Ismail, Well-balanced scheme for shallow water equations with arbitrary topography. Int. J. Dyn. Syst. Differ. Eqs. 1(3), 196–204 (2008)

    MATH  Google Scholar 

  33. Thanh, N.X., Thanh, M.D., Cuong, D.H.: Godunov-type numerical scheme for the shallow water equations with horizontal temperature gradient. Taiwan. J. Math. 24(1), 179–223 (2020)

    Article  MathSciNet  Google Scholar 

  34. Xing, Y., Shu, C.-W., Noelle, S.: On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. 48, 339–349 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the Reviewers for their very constructive comments and helpful suggestions. This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under Grant number B2021-28-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Duc Thanh.

Additional information

Communicated by Davoud Mirzaei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, N.X., Thanh, M.D. & Cuong, D.H. Dimensional Splitting Well-Balanced Schemes on Cartesian Mesh for 2D Shallow Water Equations with Variable Topography. Bull. Iran. Math. Soc. 48, 2321–2348 (2022). https://doi.org/10.1007/s41980-021-00648-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-021-00648-x

Keywords

Mathematics Subject Classification

Navigation