Skip to main content

Advertisement

Log in

Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production

  • Original Paper
  • Published:
Economics of Disasters and Climate Change Aims and scope Submit manuscript

Abstract

The impacts of climate change on the food system are a key concern for societies and policy makers globally. Assessments of the biophysical impacts of crop productivity show modest but uncertain impacts. But crop growth is not the only factor that matters for the food production. Climate impacts on the labour force through increased heat stress also need to be considered. Here, we provide projections for the integrated climate-induced impacts on crop yields and worker productivity on the agro-economy in a global multi-sector economic model. Biophysical impacts are derived from a multi-model ensemble, which is based on a combination of climate and crop models, and the economic analysis is conducted for different socio-economic pathways. This framework allows for a comprehensive assessment of biophysical and socio-economic risks, and outlines rapid risk increases for high-warming scenarios. Considering heat effects on labour productivity, regional production costs could increase by up to 10 percentage points or more in vulnerable tropical regions such as South and South-East Asia, and Africa. Heat stress effects on labour might offset potential benefits through productivity gains due to the carbon dioxide fertilisation effect. Agricultural adaptation through increased mechanisation might allow to alleviate some of the negative heat stress effects under optimistic scenarios of socio-economic development. Our results highlight the vulnerability of the food system to climate change impacts through multiple impact channels. Overall, we find a consistently negative impact of future climate change on crop production when accounting for worker productivity next to crop yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Aaheim HA, Orlov A, Wei T, Glomsrød S (2018) GRACE model and applications. CICERO Center for International Climate and Environmental Research - Oslo. CICERO Reports 2018:01. https://pub.cicero.oslo.no/cicero-xmlui/handle/11250/2480843. Accessed 15 Feb 2021

  • Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys Res Lett 39:1–7. https://doi.org/10.1029/2012GL051607

  • Angel A, Narayanan B, McDougall R (2016) GTAP Data Bases: GTAP 9 Data Base Documentation. https://www.gtap.agecon.purdue.edu/databases/v9/v9_doco.asp. Accessed 10 Feb 2021

  • Bernard TE, Pourmoghani M (1999) Prediction of workplace wet bulb global temperature. Appl Occup Environ Hyg 14:126–134. https://doi.org/10.1080/104732299303296

    Article  Google Scholar 

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706. https://doi.org/10.1111/j.1365-2486.2006.01305.x

    Article  Google Scholar 

  • Britz W, Roson R (2019) G-RDEM: A GTAP-Based recursive dynamic CGE model for long-term baseline generation and analysis. J Glob Econ Anal 4:50–96. https://doi.org/10.21642/JGEA.040103AF

    Article  Google Scholar 

  • Bröde P, Fiala D, Lemke B, Kjellstrom T (2018) Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. Int J Biometeorol 62:331–345. https://doi.org/10.1007/s00484-017-1346-9

    Article  Google Scholar 

  • Budd GM (2008) Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport Heat Stress Sport 11:20–32. https://doi.org/10.1016/j.jsams.2007.07.003

    Article  Google Scholar 

  • Bussieck MR, Meeraus A (2004) General Algebraic Modeling System (GAMS). In: Kallrath J (ed) Modeling languages in mathematical optimization, applied optimization. Springer US, pp 137–157. https://doi.org/10.1007/978-1-4613-0215-5_8

  • Chalise S, Naranpanawa A (2016) Climate change adaptation in agriculture: a computable general equilibrium analysis of land-use change in Nepal. Land Use Policy 59:241–250. https://doi.org/10.1016/j.landusepol.2016.09.007

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rao J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J (2008) Evaluation of the HadGEM2 model. Hadley Centre Tech. Note 74. https://www.inscc.utah.edu/~reichler/publications/papers/Collins_08_MetOffice_74.pdf. Accessed 15 Feb 2021

  • Degener JF (2015) Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany. Front Environ Sci 3:1–14. https://doi.org/10.3389/fenvs.2015.00048

  • Deryng D, Sacks WJ, Barford CC, Ramankutty N (2011) Simulating the effects of climate and agricultural management practices on global crop yield. Glob Biogeochem Cycles 25:1–18. https://doi.org/10.1029/2009GB003765

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. J Clim 25:6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

  • Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013a) GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267. https://doi.org/10.1175/JCLI-D-12-00150.1

    Article  Google Scholar 

  • Dunne JP, Stouffer RJ, John JG (2013b) Reductions in labour capacity from heat stress under climate warming. Nat Clim Chang 3:563–566. https://doi.org/10.1038/nclimate1827

    Article  Google Scholar 

  • Ferris MC, Munson TS (2000) Complementarity problems in GAMS and the PATH solver1This material is based on research supported by National Science Foundation Grant CCR-9619765 and GAMS Corporation. The paper is an extended version of a talk presented at CEFES ’98 (Computation in Economics, Finance and Engineering: Economic Systems) in Cambridge, England, in July 1998.1. J Econ Dyn Control 24:165–188. https://doi.org/10.1016/S0165-1889(98)00092-X

    Article  Google Scholar 

  • Frieler K, Lange S, Piontek F, Reyer CPO, Schewe J, Warszawski L, Zhao F, Chini L, Denvil S, Emanuel K, Geiger T, Halladay K, Hurtt G, Mengel M, Murakami D, Ostberg S, Popp A, Riva R, Stevanovic M, Suzuki T, Volkholz J, Burke E, Ciais P, Ebi K, Eddy TD, Elliott J, Galbraith E, Gosling SN, Hattermann F, Hickler T, Hinkel J, Hof C, Huber V, Jägermeyr J, Krysanova V, Marcé R, Müller Schmied H, Mouratiadou I, Pierson D, Tittensor DP, Vautard R, van Vliet M, Biber MF, Betts RA, Bodirsky BL, Deryng D, Frolking S, Jones CD, Lotze HK, Lotze-Campen H, Sahajpal R, Thonicke K, Tian H, Yamagata Y (2017) Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci Model Dev 10:4321–4345. https://doi.org/10.5194/gmd-10-4321-2017

    Article  Google Scholar 

  • Fujimori S, Iizumi T, Hasegawa T, Takakura J, Takahashi K, Hijioka Y (2018) Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields. Sustainability 10:3673. https://doi.org/10.3390/su10103673

    Article  Google Scholar 

  • Gaupp F, Hall J, Mitchell D, Dadson S (2019) Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming. Agric Syst 175:34–45. https://doi.org/10.1016/j.agsy.2019.05.010

    Article  Google Scholar 

  • Gray SB, Dermody O, Klein SP, Locke AM, McGrath JM, Paul RE, Rosenthal DM, Ruiz-Vera UM, Siebers MH, Strellner R, Ainsworth EA, Bernacchi CJ, Long SP, Ort DR, Leakey ADB (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants 2:1–8. https://doi.org/10.1038/nplants.2016.132

    Article  Google Scholar 

  • Hamim (2005) Photosynthesis of C3 and C4 species in response to increased CO2 concentration and drought stress. HAYATI J Biosci 12:131–138. https://doi.org/10.1016/S1978-3019(16)30340-0

    Article  Google Scholar 

  • Harrison PA, Dunford RW, Holman IP, Rounsevell MDA (2016) Climate change impact modelling needs to include cross-sectoral interactions. Nat Clim Chang 6:885–890. https://doi.org/10.1038/nclimate3039

    Article  Google Scholar 

  • Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013a) A trend-preserving bias correction – the ISI-MIP approach. Earth Syst Dyn 4:219–236. https://doi.org/10.5194/esd-4-219-2013

    Article  Google Scholar 

  • Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013b) A trend-preserving bias correction - the ISI-MIP approach. Earth Syst Dyn 4:219–236. https://doi.org/10.5194/esd-4-219-2013

    Article  Google Scholar 

  • Hertel TW, de Lima CZ (2020) Viewpoint: climate impacts on agriculture: searching for keys under the streetlight. Food Policy 95:101954. https://doi.org/10.1016/j.foodpol.2020.101954

    Article  Google Scholar 

  • Hertel T, van der Mensbrugghe D (2016) Chapter 14: Behavioral Parameters. Cent. Glob. Trade Anal. http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=5138. Accessed 15 Feb 2021

  • Hurlbert M, Krishnaswamy J, Davin E, Johnson FX, Mena CF, Morton J, Myeong S, Viner D, Warner K, Wreford A, Zakieldeen S, Zommers Z (2019) Risk management and decision making in relation to sustainable development. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds.)]. In press

  • IFPRI (2020) Global spatially-disaggregated crop production statistics data for 2010 version 2.0. https://doi.org/10.7910/DVN/PRFF8V. Accessed 10 Feb 2021

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1535 pp

  • ISO (1989) Hot environments — estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). ISO Standard 7243. Geneva: International Standards Organization; 1989

  • Karstens K, Chen D, Windisch M, Alves M, Beier F, v Jeetze P, Mishra A, Humpenoeder F (2020) mrmagpie: madrat based MAgPIE Input Data Library. R package version 0.26.1

  • Kjellstrom T, Holmer I, Lemke B (2009) Workplace heat stress, health and productivity – an increasing challenge for low and middle-income countries during climate change. Glob Health Action 2:1–6. https://doi.org/10.3402/gha.v2i0.2047

  • Kjellstrom T, Briggs D, Freyberg C, Lemke B, Otto M, Hyatt O (2016) Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu Rev Public Health 37:97–112. https://doi.org/10.1146/annurev-publhealth-032315-021740

    Article  Google Scholar 

  • Kjellstrom T, Freyberg C, Lemke B, Otto M, Briggs D (2018) Estimating population heat exposure and impacts on working people in conjunction with climate change. Int J Biometeorol 62:291–306. https://doi.org/10.1007/s00484-017-1407-0

    Article  Google Scholar 

  • Kjellstrom T, Maitre N, Saget C, Otto M, Karimova T (2019) Working on a warmer planet: the effect of heat stress on productivity and decent work. International Labour Office – Geneva, ILO. https://www.ilo.org/global/publications/books/WCMS_711919/lang--en/index.htm. Accessed 15 Feb 2021

  • Kornhuber K, Coumou D, Vogel E, Lesk C, Donges JF, Lehmann J, Horton RM (2020) Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat Clim Chang 10:48–53. https://doi.org/10.1038/s41558-019-0637-z

    Article  Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J Adv Model Earth Syst 3:1–27. https://doi.org/10.1029/2011MS00045

  • Leemans R, Solomon AM (1993) Modeling the potential change in yield and distribution of the earth’s crops under a warmed climate. Clim Res 3:79–96

    Article  Google Scholar 

  • Lemke B, Kjellstrom T (2012) Calculating workplace WBGT from meteorological data: a tool for climate change assessment. Ind Health 50:267–278. https://doi.org/10.2486/indhealth.MS1352

    Article  Google Scholar 

  • Liljegren JC, Carhart RA, Lawday P, Tschopp S, Sharp R (2008) Modeling the wet bulb globe temperature using standard meteorological measurements. J Occup Environ Hyg 5:645–655. https://doi.org/10.1080/15459620802310770

    Article  Google Scholar 

  • de Lima CZ, Buzan JR, Moore FC, Baldos ULC, Huber M, Hertel TW (2021) Heat stress on agricultural workers exacerbates crop impacts of climate change. Environ Res Lett 16:044020. https://doi.org/10.1088/1748-9326/abeb9f

    Article  Google Scholar 

  • Liu J, Williams JR, Zehnder AJB, Yang H (2007) GEPIC – modelling wheat yield and crop water productivity with high resolution on a global scale. Agric Syst 94:478–493. https://doi.org/10.1016/j.agsy.2006.11.019

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 319:607–610. https://doi.org/10.1126/science.1152339

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002. https://doi.org/10.1088/1748-9326/2/1/014002

    Article  Google Scholar 

  • Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla PR, Yamagata Y, Kainuma M (2011) An emission pathway for stabilization at 6 Wm−2 radiative forcing. Clim Change 109:59. https://doi.org/10.1007/s10584-011-0150-5

    Article  Google Scholar 

  • Moore FC, Baldos U, Hertel T, Diaz D (2017) New science of climate change impacts on agriculture implies higher social cost of carbon. Nat Commun 8:1607. https://doi.org/10.1038/s41467-017-01792-x

    Article  Google Scholar 

  • Müller C, Franke J, Jägermeyr J, Ruane AC, Elliott J, Moyer E, Heinke J, Falloon PD, Folberth C, Francois L, Hank T, Izaurralde RC, Jacquemin I, Liu W, Olin S, Pugh TAM, Williams K, Zabel F (2021) Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ Res Lett 16:034040. https://doi.org/10.1088/1748-9326/abd8fc

    Article  Google Scholar 

  • Müller C, Robertson RD (2014) Projecting future crop productivity for global economic modeling. Agric Econ 45:37–50. https://doi.org/10.1111/agec.12088

    Article  Google Scholar 

  • Nechifor V, Winning M (2019) Global crop output and irrigation water requirements under a changing climate. Heliyon 5:e01266. https://doi.org/10.1016/j.heliyon.2019.e01266

    Article  Google Scholar 

  • NIOSH (1986) Criteria for a recommended standard: occupational exposure to hot environments. NIOSH Publication No. 86-113. National Institute of Occupational Health, Atlanta

  • Orlov A, Sillmann J, Aaheim A, Aunan K, de Bruin K (2019) Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe. Econ Disasters Clim Chang. https://doi.org/10.1007/s41885-019-00044-0

    Article  Google Scholar 

  • Orlov A, Sillmann J, Aunan K, Kjellstrom T, Aaheim A (2020) Economic costs of heat-induced reductions in worker productivity due to global warming. Glob Environ Chang 63:102087. https://doi.org/10.1016/j.gloenvcha.2020.102087

    Article  Google Scholar 

  • Ren X, Weitzel M, O’Neill BC, Lawrence P, Meiyappan P, Levis S, Balistreri EJ, Dalton M (2018) Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Clim Chang 146:517–531. https://doi.org/10.1007/s10584-016-1791-1

    Article  Google Scholar 

  • Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  • Roberts MJ, Braun NO, Sinclair TR, Lobell DB, Schlenker W (2017) Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ Res Lett 12:095010. https://doi.org/10.1088/1748-9326/aa7f33

    Article  Google Scholar 

  • Rosenzweig C, Ruane AC, Antle J, Elliott J, Ashfaq M, Chatta AA, Ewert F, Folberth C, Hathie I, Havlik P, Hoogenboom G, Lotze-Campen H, MacCarthy DS, Mason-D’Croz D, Contreras EM, Müller C, Perez-Dominguez I, Phillips M, Porter C, Raymundo RM, Sands RD, Schleussner C-F, Valdivia RO, Valin H, Wiebe K (2018) Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philos Transact A Math Phys Eng Sci 376:1–26. https://doi.org/10.1098/rsta.2016.0455

  • Roson R, van der Mensbrugghe D (2010) Climate change and economic growth: impacts and Interactions. University Ca' Foscari of Venice, Dept. of Economics Research Paper Series No. 07_10. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1594708. Accessed 15 Feb 2021

  • Rutherford TF (1999) applied general equilibrium modeling with MPSGE as a GAMS subsystem: an overview of the modeling framework and syntax. Comput Econ 14:1–46. https://doi.org/10.1023/A:1008655831209

    Article  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci 106:15594–15598. https://doi.org/10.1073/pnas.0906865106

    Article  Google Scholar 

  • Schleussner C-F, Deryng D, Müller C, Elliott J, Saeed F, Folberth C, Liu W, Wang X, Pugh TAM, Thiery W, Seneviratne SI, Rogelj J (2018) Crop productivity changes in 1.5\hspace0.167em°C and 2\hspace0.167em°C worlds under climate sensitivity uncertainty. Environ Res Lett 13:064007. https://doi.org/10.1088/1748-9326/aab63b

    Article  Google Scholar 

  • Siddig K, Stepanyan D, Wiebelt M, Grethe H, Zhu T (2020) Climate change and agriculture in the Sudan: impact pathways beyond changes in mean rainfall and temperature. Ecol Econ 169:106566. https://doi.org/10.1016/j.ecolecon.2019.106566

    Article  Google Scholar 

  • Takakura J, Fujimori S, Takahashi K, Hijioka Y, Hasegawa T, Honda Y, Masui T (2017) Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation. Environ Res Lett 12:064010. https://doi.org/10.1088/1748-9326/aa72cc

    Article  Google Scholar 

  • van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim Chang 109:95. https://doi.org/10.1007/s10584-011-0152-3

    Article  Google Scholar 

  • Villoria NB, Elliott J, Müller C, Shin J, Zhao L, Song C (2016) Rapid aggregation of global gridded crop model outputs to facilitate cross-disciplinary analysis of climate change impacts in agriculture. Environ Model Softw 75:193–201. https://doi.org/10.1016/j.envsoft.2015.10.016

    Article  Google Scholar 

  • Wang W, Cai C, Lam SK, Liu G, Zhu J (2018) Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. Eur J Agron 99:21–29. https://doi.org/10.1016/j.eja.2018.06.005

    Article  Google Scholar 

  • White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124:357–368. https://doi.org/10.1016/j.fcr.2011.07.001

    Article  Google Scholar 

  • Wilcox J, Makowski D (2014) A meta-analysis of the predicted effects of climate change on wheat yields using simulation studies. Field Crops Res 156:180–190. https://doi.org/10.1016/j.fcr.2013.11.008

    Article  Google Scholar 

  • Williams JR, Jones CA, Kiniry JR, Spanel DA (1989) The EPIC crop growth model. Trans ASAE 32:497–0511. https://doi.org/10.13031/2013.31032

  • World Bank (2018) Agriculture, forestry, and fishing, value added (% of GDP). World Bank national accounts data, and OECD National Accounts data files. https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS. Accessed 15 Feb 2021

  • World Bank (2019) World development indicators. Agricultural machinery, tractors per 100 sq. km of arable land. https://data.worldbank.org/indicator/AG.LND.TRAC.ZS. Accessed 15 Feb 2021

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J-L, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114:9326–9331. https://doi.org/10.1073/pnas.1701762114

  • Zscheischler J, Westra S, van den Hurk BJJM, Seneviratne SI, Ward PJ, Pitman A, AghaKouchak A, Bresch DN, Leonard M, Wahl T, Zhang X (2018) Future climate risk from compound events. Nat Clim Change 8:469–477. https://doi.org/10.1038/s41558-018-0156-3

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Research Council of Norway and co-funded by the European Union through the project “LAnd MAnagement for CLImate Mitigation and Adaptation” (LAMACLIMA) (Grant agreement No. 300478), which is part of ERA4CS, an ERA-NET initiated by JPI Climate. Funding was also received from the European Union Horizon 2020 project “REmote Climate Effects and their Impact on European sustainability, Policy and Trade” (RECEIPT) (Grant agreement No. 820712). We would also like to thank an anonymous referee for very helpful comments and improvement suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Orlov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1370 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A., Daloz, A.S., Sillmann, J. et al. Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production. EconDisCliCha 5, 367–390 (2021). https://doi.org/10.1007/s41885-021-00091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41885-021-00091-6

Keywords

Navigation