Skip to main content
Log in

Surface Effect on Vibration of Timoshenko Nanobeam Based on Generalized Differential Quadrature Method and Molecular Dynamics Simulation

  • Original Article
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Nanobeams have promising applications in areas such as sensors, actuators, and resonators in nanoelectromechanical systems (NEMS). Considering the effects of gyration inertia, surface layer mass, surface residual stress, and surface Young’s modulus, this study develops the vibration equations of the Timoshenko nanobeam. The generalized differential quadrature (GDQ) method and molecular dynamics (MD) simulation are used to study the surface effect on vibration. For a rectangular cross section, surface residual stress and surface Young’s modulus are all affected by the height of the cross section rather than by the length–height ratio. If surface layer mass is considered, then the first three natural frequencies all decrease relative to their counterparts in the case in which surface layer mass is ignored. Results show that the effect of gyration inertia on resonance frequency is negligible. Longitudinal vibration does not easily occur relative to the bending and rotation vibrations of nanobeams. In addition, the results obtained by the GDQ method fit those obtained by MD simulation for beams with length–height ratios of 4–8. This study provides insights into the mechanism of the vibration of short and deep nanobeams and sheds light on the quantitative design of the elements in NEMSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Wang ZL (2000) Nanomaterials for nanoscience and nanotechnology. In: Wang ZL (ed) Charaterization of nanophase materials. Wiley, Weinheim

  2. Frank S, Poncharal P, Wang ZL et al (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Article  Google Scholar 

  3. Wang Q, Arash B (2014) A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput Mater Sci 82:350–360

    Article  Google Scholar 

  4. Eltaher MA, Agwa MA, Mahmoud FF (2016) Nanobeam sensor for measuring a zeptogram mass. Int J Mech Mater Des 12:211–221

    Article  Google Scholar 

  5. Tang HL, Shen ZB, Li DK (2014) Vibration of nonuniform carbon nanotube with attached mass via nonlocal Timoshenko beam theory. J Mech Sci Technol 28(9):37413747

    Article  Google Scholar 

  6. Aydogdu M (2009) A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E 41:1651–1655

    Article  Google Scholar 

  7. Barretta R, Feo L, Luciano R et al (2016) Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation. Compos Part B-Eng 100:208–219

    Article  Google Scholar 

  8. Robinson MTA, Adali S (2018) Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation. Compos Struct 206:95–103

    Article  Google Scholar 

  9. Rouhi H, Ebrahimi F, Ansari R et al (2019) Nonlinear free and forced vibration analysis of Timoshenko nanobeams based on Mindlin’s second strain gradient theory. Eur J Mech A Solid 73:268–281

    Article  MathSciNet  MATH  Google Scholar 

  10. Simsek M, Yurtcu HH (2013) Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386

    Article  Google Scholar 

  11. Thai HT (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang LF, Hu HY (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71:195412

    Article  Google Scholar 

  13. Jiang JN, Wang LF, Zhang YQ (2017) Vibration of single-walled carbon nanotubes with elastic boundary conditions. Int J Mech Sci 122:156–166

    Article  Google Scholar 

  14. Li C, Yao LQ, Chen WQ et al (2015) Comments on nonlocal effects in nano-cantilever beams. Int J Eng Sci 87:47–57

    Article  Google Scholar 

  15. Zhan HZ, Yang FP, Wang X (2018) Nonlinear dynamic characteristics of bi-graphene sheets/piezoelectric laminated films considering high order van der Walls force and scale effect. Appl Math Model 56:289–303

    Article  MathSciNet  MATH  Google Scholar 

  16. Eltaher MA, Abdelrahman AA, Al-Nabawy A et al (2014) Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position. Appl Math Comput 235:512–529

    MathSciNet  MATH  Google Scholar 

  17. Zarepour M, Hosseini SAH, Akbarzadeh AH (2019) Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Appl Math Model 69:563–582

    Article  MathSciNet  MATH  Google Scholar 

  18. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  19. Wang GF, Feng XQ (2009) Surface effects on buckling of nanowires under uniaxial compression. Appl Phys Lett 94:141913

    Article  Google Scholar 

  20. Zhao DM, Liu JL, Wang L (2016) Nonlinear free vibration of cantilever nanobeam with surface effects: semi-analytical solutions. Int J Mech Sci 113:184–195

    Article  Google Scholar 

  21. Jalaei MH, Arani AG, Nguyen-Xuan H (2019) Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory. Int J Mech Sci 161–162:105043

    Article  Google Scholar 

  22. Ansari R, Gholami R, Sahmani S (2011) Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos Struct 94:221–228

    Article  Google Scholar 

  23. Chen W, Wang L, Dai HL (2019) Stability and nonlinear vibration analysis of an axially loaded nanobeam based on nonlocal strain gradient theory. Int J Appl Mech 11(7):1950069

    Article  Google Scholar 

  24. Wang J, Shen HM, Zhang B et al (2018) Studies on the dynamic stability of an axially moving nanobeam based on the nonlocal strain gradient theory. Mod Phys Lett B 32:1850167

    Article  MathSciNet  Google Scholar 

  25. Attia MA, Shanab RA, Mohamed SA et al (2019) Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory. Int J Struct Stab Dyn 19(11):1950127

    Article  MathSciNet  Google Scholar 

  26. Trabelssi M, El-Borgi S, Fernandes R et al (2019) Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation. Compos Part B Eng 157:331–349

    Article  Google Scholar 

  27. Jazi AJ, Shahriari B, Torabi K (2017) Exact closed form solution for the analysis of the transverse vibration mode of a Nano-Timoshenko beam with multiple concentrated masses. Int J Mech Sci 131–132:728–743

    Article  Google Scholar 

  28. Arefi M, Pourjamshidian M, Arani AG et al (2019) Influence of flexoelectric, small-scale, surface and residual stress on the nonlinear vibration of sigmoid, exponential and power-law FG Timoshenko nanobeams. J Low Freq Noise V A 38(1):122–142

    Article  Google Scholar 

  29. Jiang LY, Yan Z (2010) Timoshenko beam model for static bending of nanowires with surface effects. Physica E 42:2274–2279

    Article  Google Scholar 

  30. Yang LH, Fan T, Yang LP et al (2017) Bending of functionally graded nanobeams incorporating surface effects based on Timoshenko beam model. Theor Appl Mech Lett 7:152–158

    Article  Google Scholar 

  31. Hashemian M, Foroutan S, Toghraie D (2019) Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mech Mater 139:103209

    Article  Google Scholar 

  32. Ansari R, Mohammadi V, Faghih Shojaei M et al (2014) Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur J Mech A Solid 45:143–152

    Article  MathSciNet  MATH  Google Scholar 

  33. Hosseini SAH, Rahmani O (2016) Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl Phys A Mater 122:169

    Article  Google Scholar 

  34. Zhao DM, Hao P, Wang JW et al (2020) Surface effects on the quasi-periodical free vibration of the nanobeam: semi-analytical solution based on the residue harmonic balance method. Meccanica 55:989–1005

    Article  MathSciNet  MATH  Google Scholar 

  35. Mi C, Jun S, Kouris DA et al (2008) Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Phys Rev B 77:075425

    Article  Google Scholar 

  36. Shenoy VB (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104

    Article  Google Scholar 

  37. Jia N, Yao Y, Yang YZ et al (2017) Surface effect on the resonant frequency of Timoshenko nanobeams. Int J Mech Sci 133:21–27

    Article  Google Scholar 

  38. Lu P, He LH, Lee HP et al (2006) Thin plate theory including surface effects. Int J Solids Struct 43:4631–4647

    Article  MATH  Google Scholar 

  39. Ansari R, Faghih Shojaei M, Mohammadi V et al (2014) Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos Struct 113:316–327

    Article  Google Scholar 

  40. Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46(1):1–38

    Article  Google Scholar 

  41. Ru CQ (2010) Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci China Phys Mech 53(3):536–544

    Article  Google Scholar 

  42. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983–7991

    Article  Google Scholar 

  43. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grand Number 11672334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

All the authors agree to the ethics approval.

Consent to participate

Not applicable.

Consent for publication

All the authors consent to publication.

Appendices

Appendix A

In Eqs. (2325) of Sect. 2, parameters \(a_{11}\), \(a_{12}\), \(a_{21}\), \(a_{22}\), \(a_{23}\), \(a_{24}\), \(a_{31}\),\({ }a_{32}\), \(a_{33}\), \(a_{34}\), \(a_{35}\), \(a_{36}\), and \(a_{37}\) are provided as

$$ a_{11} = \frac{{\left[ {Ebh/\left( {1 - \nu^{2} } \right) + 2b\left( {2\mu^{\text{s}} + \lambda^{\text{s}} } \right)} \right]}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}};a_{12} = \frac{{\left[ {Ebh/\left( {1 - \nu^{2} } \right) + 2b\left( {2\mu^{\text{s}} + \lambda^{\text{s}} - \tau^{\text{s}} } \right)} \right]}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}};a_{21} = 1; $$
$$ a_{22} = \frac{{ - k_{\text{s}} Gbh}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}} ;a_{31} = \frac{{ - k_{\text{s}} Gbh}}{{\left( {\rho I_{y} + \frac{1}{2}\rho_{\text{s}} bh^{2} + \frac{{\rho_{\text{s}} }}{6}h^{3} } \right)}}\frac{{L^{2} \left( {\rho bh + 2\rho_{\text{s}} b + 2\rho_{\text{s}} h} \right)}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}}; $$
$$ a_{32} = \frac{{\left[ {\frac{{Ebh^{3} }}{{12\left( {1 - \nu^{2} } \right)}} + \frac{{bh^{2} }}{2}\left( {2\mu^{\text{s}} + \lambda^{\text{s}}} \right) - k_{\text{s}} k_{m} Gbh} \right]}}{{\left( {\rho I_{y} + \frac{1}{2}\rho_{\text{s}} bh^{2} + \frac{{\rho_{\text{s}} }}{6}h^{3} } \right)}}\frac{{\left( {\rho bh + 2\rho_{\text{s}} b + 2\rho_{\text{s}} h} \right)}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}}; $$
$$ a_{33} = \frac{{\left( {k_{\text{s}} Gbh + \tau^{\text{s}} b} \right)}}{{\left( {\rho I_{y} + \frac{1}{2}\rho_{\text{s}} bh^{2} + \frac{{\rho_{\text{s}} }}{6}h^{3} } \right)}}\frac{{L^{2} \left( {\rho bh + 2\rho_{\text{s}} b + 2\rho_{\text{s}} h} \right)}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}}; $$
$$ a_{34} = - \frac{{bh^{2} \nu \tau^{\text{s}} }}{{6\left( {\rho I_{y} + \frac{1}{2}\rho_{\text{s}} bh^{2} + \frac{{\rho_{\text{s}} }}{6}h^{3} } \right)\left( {1 - \nu } \right)}}\frac{{L\left( {\rho bh + 2\rho_{\text{s}} b + 2\rho_{\text{s}} h} \right)}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}};\quad a_{35} = k_{m} \frac{{\left( {\rho bh + 2\rho_{\text{s}} b + 2\rho_{\text{s}} h} \right)}}{{\left( {\rho I_{y} + \frac{1}{2}\rho_{\text{s}} bh^{2} + \frac{{\rho_{\text{s}} }}{6}h^{3} } \right)}}; $$
$$ a_{36} = \frac{{3k_{m} }}{{2\left( {\rho I_{y} + \frac{1}{2}\rho_{\text{s}} bh^{2} + \frac{{\rho_{\text{s}} }}{6}h^{3} } \right)}}\left[ {Ebh/\left( {1 - \nu^{2} } \right) + 2b\left( {2\mu^{\text{s}} + \lambda^{\text{s}} - \tau^{\text{s}} } \right)} \right]\frac{{\left( {\rho bh + 2\rho_{\text{s}} b + 2\rho_{\text{s}} h} \right)}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}}; $$
$$ a_{37} = \frac{{k_{m} }}{{\left( {\rho I_{y} + \frac{1}{2}\rho_{\text{s}} bh^{2} + \frac{{\rho_{\text{s}} }}{6}h^{3} } \right)}}\left[ {Ebh/\left( {1 - \nu^{2} } \right) + 2b\left( {2\mu^{\text{s}} + \lambda^{\text{s}} } \right)} \right]\frac{{\left( {\rho bh + 2\rho_{\text{s}} b + 2\rho_{\text{s}} h} \right)}}{{\left( {3b\tau^{\text{s}} + k_{\text{s}} Gbh} \right)}}. $$

Appendix B

In Sect. 3, the procedure to compute the weighting coefficients of the first and higher-order derivatives based on the GDQ method are written as

$$ p\left( {\xi_{i} } \right) = \mathop \prod \limits_{j = 1,j \ne i}^{j = N} \left( {\xi_{i} - \xi_{j} } \right); $$
$$ p\left( \xi \right) = \mathop \prod \limits_{j = 1}^{j = N} \left( {\xi - \xi_{j} } \right); $$
$$ \overline{w}\left( \xi \right) = \mathop \sum \limits_{i = 1}^{N} l_{i} \left( \xi \right)\overline{w}\left( {\xi_{i} } \right); $$
$$ \phi \left( \xi \right) = \mathop \sum \limits_{i = 1}^{N} l_{i} \left( \xi \right)\phi \left( {\xi_{i} } \right); $$
$$ l_{i} \left( \xi \right) = \mathop \prod \limits_{j = 1,j \ne i}^{N} \frac{{\xi - \xi_{k} }}{{\xi_{j} - \xi_{k} }}; $$
$$ l_{j} \left( {\xi_{i} } \right) = \left\{ {\begin{array}{*{20}c} {1, \left( {i = j} \right)} \\ {0,\left( {i \ne j} \right)} \\ \end{array} } \right.; $$
$$ {\varvec{D}}_{ij}^{\left( 1 \right)} = l_{j}^{^{\prime}} \left( {\xi_{i} } \right) = \frac{{p\left( {\xi_{i} } \right)}}{{\left( {\xi_{i} - \xi_{j} } \right)p\left( {\xi_{j} } \right)}}, \left( {i \ne j} \right); $$
$$ {\varvec{D}}_{ii}^{\left( 1 \right)} = l_{i}^{^{\prime}} \left( {\xi_{i} } \right) = \mathop \sum \limits_{j = 1, j \ne i}^{N} \frac{1}{{\xi_{i} - \xi_{j} }} = - \mathop \sum \limits_{j = 1, j \ne i}^{N} B_{ij}^{\left( 1 \right)} ; $$
$$ {\varvec{D}}_{ij}^{\left( r \right)} = n\left( {B_{ii}^{{\left( {r - 1} \right)}} B_{ij}^{\left( 1 \right)} - \frac{{B_{ij}^{{\left( {r - 1} \right)}} }}{{\xi_{i} - \xi_{j} }}} \right),\,\left( {i \ne j} \right); $$
$$ {\varvec{D}}_{ii}^{\left( r \right)} = \mathop \sum \limits_{j = 1, j \ne i}^{N} B_{ij}^{\left( r \right)} ,\,\left( {i = j} \right); $$

Appendix C

In Sect. 3, the process to compute the matrices M, K, and N using the GDQ method can be described as

$$ {\varvec{M}} = \left[ {\begin{array}{*{20}c} {{\varvec{M}}_{{\overline{u}}} } & 0 & 0 \\ 0 & {{\varvec{M}}_{{\overline{w}}} } & 0 \\ 0 & 0 & {{\varvec{M}}_{\phi } } \\ \end{array} } \right]_{3N \times 3N} ; $$
$$ {\varvec{K}} = \left[ {\begin{array}{*{20}c} { - a_{11} {\varvec{D}}^{\left( 2 \right)} } & 0 & 0 \\ 0 & { - a_{21} {\varvec{D}}^{\left( 2 \right)} } & { - a_{22} {\varvec{D}}^{\left( 1 \right)} } \\ 0 & { - a_{33} {\varvec{D}}^{\left( 1 \right)} - a_{34} {\varvec{D}}^{\left( 2 \right)} - a_{35} {\varvec{D}}^{\left( 3 \right)} } & { - a_{31} {\mathbf{I}} - a_{32} {\varvec{D}}^{\left( 2 \right)} } \\ \end{array} } \right]. $$
$$ {\varvec{N}}\left( {\varvec{Z}} \right) = \left[ {\begin{array}{*{20}c} {{\varvec{N}}_{{\overline{u}}} } \\ {{\varvec{N}}_{{\overline{w}}} } \\ {{\varvec{N}}_{\phi } } \\ \end{array} } \right] $$

where

$$ {\varvec{M}}_{{\overline{u}}} = {\varvec{M}}_{{\overline{w}}} = {\varvec{M}}_{\phi } = {\mathbf{I}} = \left[ {\begin{array}{*{20}c} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \end{array} } \right]_{N \times N} ; $$
$$ {\varvec{N}}_{{\overline{\varvec{u}}}} = - a_{12} \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{w}}} \right); $$
$$ {\varvec{N}}_{{\overline{w}}} = - a_{23} \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{w}}} \right) - a_{24} \left[ {\left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{u}}} \right) + \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{u}}} \right) \circ \left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{w}}} \right)} \right]; $$
$$ \begin{aligned} {\varvec{N}}_{\phi } & = - a_{36} \left[ {2\left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) + \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 3 \right)} \overline{\varvec{w}}} \right)} \right] \\ & \quad - a_{37} \left[ {2\left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 2 \right)} \overline{\varvec{u}}} \right) + \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{w}}} \right) \circ \left( {{\varvec{D}}^{\left( 3 \right)} \overline{\varvec{u}}} \right) + \left( {{\varvec{D}}^{\left( 1 \right)} \overline{\varvec{u}}} \right) \circ \left( {{\varvec{D}}^{\left( 3 \right)} \overline{\varvec{w}}} \right)} \right]; \\ \end{aligned} $$

The operation symbol \(\circ\) represents the Hadamard product.

The Hadamard and Kronecker Products are as follows.

Definition 1

Hadamard product.

Let

$$ {\varvec{A}} = \left[ {A_{ij} } \right]_{N \times M} ,{\varvec{B}} = \left[ {B_{ij} } \right]_{N \times M} $$

The Hadamard product expressed in matrix form is

$$ {\varvec{A}} \circ {\varvec{B}} = \left[ {A_{ij} B_{ij} } \right]_{{{\varvec{N}} \times {\varvec{M}}}} . $$

Based on the GDQ method, the computation of the weighting coefficients of the first- and higher-order derivatives is

$$ \left[ {\begin{array}{*{20}c} { - a_{11} {\varvec{D}}^{\left( 2 \right)} - \omega^{2} {\varvec{M}}_{{\overline{u}}} } & 0 & 0 \\ 0 & { - a_{21} {\varvec{D}}^{\left( 2 \right)} - \omega^{2} {\varvec{M}}_{{\overline{w}}} } & { - a_{22} {\varvec{D}}^{\left( 1 \right)} } \\ 0 & { - a_{33} {\varvec{D}}^{\left( 1 \right)} - a_{34} {\varvec{D}}^{\left( 2 \right)} - a_{35} {\varvec{D}}^{\left( 3 \right)} } & { - a_{31} {\mathbf{I}} - a_{32} {\varvec{D}}^{\left( 2 \right)} - \omega^{2} {\varvec{M}}_{\phi } } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\overline{\varvec{u}}} \\ {\overline{\varvec{w}}} \\ \phi \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {{\varvec{N}}_{{\overline{u}}} } \\ {{\varvec{N}}_{{\overline{w}}} } \\ {{\varvec{N}}_{\phi } } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \right]. $$
$$ {\varvec{W}} = \left[ {W_{ij} } \right]_{N \times N} $$
$$ W_{ij} = \left\{ {\begin{array}{*{20}l} {1, i - j = 1,\,\,or\,\, i = j = N} \\ { - 1, i - j = - 1,\,\,or\,\, i = j = 1} \\ {0, i - j \ne \pm 1,i = j \ne N ,i = j \ne 1 } \\ \end{array} } \right.. $$

Definition 2

Based on the trapezoidal rule, the integral matrix operators are.

$$ \mathop \int \limits_{a}^{b} f\left( x \right){\text{d}}x = \frac{1}{2}{\varvec{XWF}} = {\varvec{S}}_{{\varvec{x}}} \varvec{F}, $$

where \({\varvec{X}} = \left\{ {x_{1} ,x_{2} , \ldots ,x_{N} } \right\}\), \({\varvec{F}} = \left\{ {f\left( {x_{1} } \right),f\left( {x_{2} } \right), \ldots ,f\left( {x_{N} } \right)} \right\}^{{\text{T}}}\),\(\varvec{S}_{{\varvec{x}}} = \left\{ {{\varvec{S}}_{{\varvec{x}}} } \right\}_{1 \times N} = \frac{1}{2}{\varvec{XW}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wang, J. & Xu, Z. Surface Effect on Vibration of Timoshenko Nanobeam Based on Generalized Differential Quadrature Method and Molecular Dynamics Simulation. Nanomanuf Metrol 4, 298–313 (2021). https://doi.org/10.1007/s41871-021-00117-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-021-00117-3

Keywords

Navigation