Skip to main content

Advertisement

Log in

Aerosol Load-Cloud Cover Correlation: A Potential Clue for the Investigation of Aerosol Indirect Impact on Climate of Europe and Africa

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Aerosol optical depth (AOD) is a key parameter in atmospheric pollution and climate processes. In this paper, we compared the aerosol loading (550 nm) from 2000–2001 to 2017–2018 and total cloud cover using seasonal, latitudinal and solar activity cycle data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and determined the spectral optical range from the region of relatively clear air (Europe) to the region of more considerable biomass burning activity (Africa). To remove the large annual cycle influence, the data were deseasonalized, allowing exploration of inter-annual variability. Deseasonalization obtains the time series AOD monthly average anomaly over the years for each grid cell. We employ the solar flux index over the regions by correlating the absolute percentage mean difference of aerosol and cloud interactions and validate the result by modeling aerosol and cloud data from 2020 to 2021 using a neural network. AOD and solar flux for Africa show correlations of − 0.638 for 2000–2001 and − 0.218 for Europe, and at the same time, AOD with cloud cover for Africa shows correlations of − 0.129 and 0.360 for Europe. The analysis confirmed an inverse weak correlation of aerosols with cloud cover. This would help resolve the knowledge gap by demonstrating that aerosol and cloud interactions are not only dependent on region but also more dependent on the solar activity cycle and seasons. We observed dependence by the latitude of the aerosol load and solar flux index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data are available upon request.

References

  • Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V (2000) Reduction of tropical cloudiness by soot. Science 288(5468):1042–1047

    Article  Google Scholar 

  • Adesina AJ, Kumar KR, Sivakumar V, Griffith D (2014) Direct radiative forcing of urban aerosols over pretoria (25.75° S, 28.28° E) using AERONET sunphotometer data: first scientific results and environmental impact. J Environ Sci 26:2459–2474

    Article  Google Scholar 

  • Alam K, Iqbal MJ, Blaschke T, Qureshi S, Khan G (2010) Monitoring spatiotemporal variations in aerosols and aerosol cloud interaction over Pakistan using MODIS data. Adv Space Res 46:1162–1176

    Article  Google Scholar 

  • Alam K, Khan R, Blaschke T, Mukhtiar A (2014) Variability of aerosol optical depth and their impact on cloud properties in Pakistan. J Atmos Solar Terr Phys 107:104–112

    Article  Google Scholar 

  • Anoruo CM (2020) Modeling and analysis of aerosol and cloud-precipitable water interhemispheric interactions of aerosol-satellite data using ground. Observation. https://doi.org/10.1007/s41810-020-00078-y,2020c

    Article  Google Scholar 

  • Anoruo CM (2021) Subseasonal aerosol characterization at the Middle East regions of AERONET site. Urban Climate 37(2021):100827

    Article  Google Scholar 

  • Anoruo CM (2022) Monsoon-seasonal validation of MODIS aerosol optical depth and characterization using AERONET observation retrieve over Italy. Environ Res. https://doi.org/10.1016/j.envres.2021.111985

    Article  Google Scholar 

  • Aryee JNA, Amekudzi LK, Quansah E, Klutse NAB, Atiah WA, Yorke C (2018) Development of high spatial resolution rainfall data for Ghana. Int J Climatol 38:1201–1215

    Article  Google Scholar 

  • Balakrishnaiah G, Raghavendra KK, Suresh RB, Rama Gopal K, Reddy RR, Reddy LSS, Suresh Babu S (2012) Spatiotemporal variations in aerosol optical and cloud parameters over Southern India retrieved from MODIS satellite data. Atmos Environ 47(435):445

    Google Scholar 

  • Bellouin N, Quaas J, Gryspeerdt E, Kinne S, Stier P, Watson-Parris D, Boucher O, Carslaw KS, Christensen M, Daniau A-L, Dufresne J-L, Feingold G, Fiedler S, Forster P, Gettelman A, Haywood JM, Lohmann U, Malavelle F, Mauritsen T, McCoy DT, Myhre G, Mülmenstädt J, Neubauer D, Possner A, Rugenstein M, Sato Y, Schulz M, Schwartz SE, Sourdeval O, Storelvmo T, Toll V, Winker D, Stevens B (2020) Bounding global aerosol radiative forcing of climate change. Rev Geophys 58:e2019RG000660. https://doi.org/10.1029/2019RG000660

    Article  Google Scholar 

  • Bender FA-M, Frey L, McCoy DT, Grosvenor DP, Mohrmann JK (2019) Assessment of aerosol–cloud–radiation correlations in satellite observations, climate models and reanalysis. Clim Dynam 52:4371–4392

    Article  Google Scholar 

  • Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens and X.Y. Zhang (2013) Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Chuanfeng Z, Yuan W, Xiaoqin S, Daizhou Z, Chunying Jiang W, Jonathan H, Zhang QF, Hao (2019) Estimating the contribution of local primary emissions to particulate pollution using high-density station observations. J Geophys Res Atmosph 10:1029

    Google Scholar 

  • Fan H, Zhao C, Yang Y (2019) A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2019.117066

    Article  Google Scholar 

  • Feingold G, McComiskey A, Yamaguchi T, Johnson J, Carslaw K, Schmidt KS (2016) New approaches to quantifying aerosol influence on the cloud radiative effect. Proc Natl Acad Sci USA 113:5812–5819

    Article  Google Scholar 

  • Frey L, Bender FA-M, Svensson G (2017) Cloud albedo changes in response to anthropogenic sulfate and nonsulfate aerosol forcings in CMIP5 models. Atmos Chem Phys 17:9145–9162

    Article  Google Scholar 

  • Georgoulias AK, Kourtidis KA, Alexandri G, Rapsomanikis S, Sanchez-Lorenzo A (2015) Common summertime total cloud cover and aerosol optical depth weekly variabilities over Europe: sign of the aerosol indirect effects? Atmos Res 153:59–73. https://doi.org/10.1016/j.atmosres.2014.07.031

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543

    Article  Google Scholar 

  • Hersey S, Garland R, Crosbie E, Shingler T, Sorooshian A, Piketh S, Burger R (2015) An overview of regional and local characteristics of aerosols in south africa using satellite, ground, and modeling data. Atmos Chem Phys 15:4259–4278

    Article  Google Scholar 

  • Hsu NC, Gautam RA, Sayer M, Bettenhausen C, Li C, Jeong MJ, Tsay SC, Holben BN (2012) Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos Chem Phys 12(17):8037–8053

    Article  Google Scholar 

  • Huang X, Ding A, Liu L, Liu Q, Ding K, Niu X, Nie W, Xu Z, Chi X, Wang M, Sun J, Guo W, Fu C (2016) Effects of aerosol–radiation interaction on precipitation during the biomass-burning season in East China. Atmos Chem Phys 16:10063–10082

    Article  Google Scholar 

  • Jia H, Ma X, Quaas J, Yin Y, Qiu T (2019) Is positive correlation between cloud droplet effective radius and aerosol optical depth over land due to retrieval artifacts or real physical processes? Atmos Chem Phys 19:8879–8896

    Article  Google Scholar 

  • Kang N, Kumar KR, Yin Y, Diao Y, Yu X (2015) Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003–2013): impact on cloud formation and climate change. Aerosol Air Qual Res 15:958–973. https://doi.org/10.4209/aaqr.2014.08.0168

    Article  Google Scholar 

  • Kinne S, Schulz M, Textor C, Guibert S, Balkanski Y, Bauer SE, Berntsen T, Berglen TF, Boucher O, Chin M, Collins W, Dentener F, Diehl T, Easter R, Feichter J, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Herzog M, Horowitz L, Isaksen I, Iversen T, Kirkevag A, Kloster S, Koch D, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Lesins G, Liu X, Lohmann U, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) An AeroCom initial assessment -optical properties in aerosol component modules of global models. Atmos Chem Phys 6(1815):1834

    Google Scholar 

  • Konsta D, Dufresne J-L, Chepfer H, Idelkadi A, Cesana G (2016) Use of A-train satellite observations (CALIPSO-PARASOL) to evaluate tropical cloud properties in the LMDZ5 GCM. Clim Dyn 47:1263–1384

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Remer LA, Martins JV (2004) Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303(5662):1342–1345

    Article  Google Scholar 

  • Kourtidis K, Stathopoulos S, Georgoulias AK, Alexandri G, Rapsomanikis S (2015) A study of the impact of synoptic weather conditions and water vapor on aerosol-cloud relationships over major urban clusters of China. Atmos Chem Phys 15:10955–10964. https://doi.org/10.5194/acp-15-10955-2015

    Article  Google Scholar 

  • Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaß-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos Chem Phys 10:1885–1898

    Article  Google Scholar 

  • Kumar A (2013) Variability of aerosol optical depth and cloud parameters over North Eastern regions of India retrieved from MODIS satellite data. J Atmosph Solar Terrest Phys 100–101:34–49

    Article  Google Scholar 

  • Kumar KR, Sivakumar V, Yin Y, Reddy R, Kang N, Diao Y, Adesina AJ, Yu X (2014) Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos Environ 95:400–408

    Article  Google Scholar 

  • Kumar KR, Adesina AJ, Sivakumar V (2016) Aerosol-cloud-precipitation interactions over major cities in South Africa: impact on regional environment and climate change. Aer Air Qual Res 16:195–211

    Article  Google Scholar 

  • Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29:1421. https://doi.org/10.1029/2002GL014910

    Article  Google Scholar 

  • Mace GG, Abernathy AC (2016) Observational evidence for aerosol invigoration in shallow cumulus downstream of Mount Kilauea. Geophys Res Lett 43(6):2981–2988

    Article  Google Scholar 

  • Malavelle F et al (2017) Strong constraints on aerosol-cloud interactions from volcanic eruptions. Nature 546:485–491

    Article  Google Scholar 

  • McCoy DT, Hartmann DL (2015) Observations of a substantial cloud-aerosol indirect effect during the 2014–2015 BárðarbungaVeiðivötn fissure eruption in Iceland. Res Lett Geophys. https://doi.org/10.1002/2015GL067070

    Article  Google Scholar 

  • McCoy DT, Bender FA-M, Grosvenor DP, Mohrmann JK, Hartmann DL, Wood R, Field PR (2018) Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data. Atmos Chem Phys 18:2035–2047

    Article  Google Scholar 

  • Meier J, Tegen I, Heinold B, Wolke R (2012) Direct and semidirect radiative effects of absorbing aerosols in Europe: results from a regional model. Geophys Res Lett. https://doi.org/10.1029/2012GL050994

    Article  Google Scholar 

  • Michibata T, Suzuki K, Sato Y, Takemura T (2016) The sources of discrepancies in aerosol-cloud-precipitation interactions between GCM and A-train retrievals. Atmos Chem Phys 16:15413–15424

    Article  Google Scholar 

  • Myhre G, Stordal F, Johnsrud M, Kaufman YJ, Rosenfeld D, Storelvmao T, Kristjansson JE, Berntsen TK, Myhre A, Isaksen ISA (2007) Aerosol-cloud interaction inferred from MODIS satellite data and aerosol global models. Atmos Chem Phys 7:3081–3101

    Article  Google Scholar 

  • Okoh D, Yusuf N, Adedoja O, Musa I, Rabiu B (2015) Preliminary results of temperature modeling in Nigeria using neural networks. Weather 70:336–343. https://doi.org/10.1002/wea.2559

    Article  Google Scholar 

  • Ooi MCG, Chan A, Ashfold MJ, Oozeer MY, Morris KI, Kong SSK (2019) The role of land use on the local climate and air quality during calm intermonsoon in a tropical city. Geosci Front 10:405–415

    Article  Google Scholar 

  • Pierce JR (2017) Cosmic rays, aerosols, clouds, and climate: Recentfindings from the cloud experiment. J Geophys Res Atmos 122:8051–8055

    Article  Google Scholar 

  • Puig-Arnavat, M., Bruno, J.C. (2015) Artificial neural networks for thermochemical conversion of biomass. Recent Advan Thermo-Chem Conv Bio, 133–156

  • Qiu J (1998) A method to determine atmospheric aerosol optical depth using total direct solar radiation. J Atmosph Scie 55:744–757

    Article  Google Scholar 

  • Qiu Y, Liao H, Zhang R, Hu J (2017) Simulated impacts of direct radiative effects of scattering and absorbing aerosols on surface layer aerosol concentrations in China during a heavily polluted event in February 2014. J Geophys Res: Atmos 122(11):5955–5975. https://doi.org/10.1002/2016jd026309

    Article  Google Scholar 

  • Quaas J, Boucher O, Jones A, Weedon GP, Kieser J, Joos H (2009) Exploiting the weekly cycle as observed over Europe to analyze aerosol indirect effects in two climate models. Atmos Chem Phys 9:8493–8501. https://doi.org/10.5194/acp-9-8493-2009

    Article  Google Scholar 

  • Quaas J, Stevens B, Stier P, Lohmann U (2010) Interpreting the cloud cover: aerosol optical depth relationshipfound in satellite data using a general circulation model Atmos. Chem Phys 10:6129–6135

    Google Scholar 

  • Tesfaye M, Sivakumar V, Botai J, Mengistu Tsidu G (2011) Aerosol climatology over South Africa based on 10 years of multiangle imaging spectroradiometer (MISR) data. J Geophys Res 116:D20216. https://doi.org/10.1029/2011JD016023

    Article  Google Scholar 

  • Toll V, Christensen M, Gassó SB, N. (2017) Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model. Geophys Res Lett 44(12):492–412

    Google Scholar 

  • Wild MA et al (2004) The consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys Res Lett 31:L11201. https://doi.org/10.1029/2003GL019188

    Article  Google Scholar 

  • Yoon J, von Hoyningen-Huene W, Vountas M, Burrows JP (2011) Analysis of the linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China. Atmos Chem Phys 11:12149–12167. https://doi.org/10.5194/acp-11-12149-2011

    Article  Google Scholar 

  • Zhang S et al (2016) On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmos Chem Phys 16:2765–2783

    Article  Google Scholar 

  • Zhao C, Klein SA, Xie S, Liu X, Boyle JS, Zhang Y (2012) Aerosol first indirect effects on nonprecipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys Res Lett. https://doi.org/10.1029/2012gl051213

    Article  Google Scholar 

  • Zhao C, Wang Y, Shit X, Zhang D, Wang C, Jiang JH, Zhang Q, Fan H (2019) Estimating the contribution of local primary emissions to particulate pollution using high-density station observations. J Geophys Res: Atmos 124:1648–1661. https://doi.org/10.1029/2018JD028888

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the MODIS team at NASA for the provision of satellite data. We appreciate the comments and suggestions of the reviewers and editor that improved the initial draft.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

C M A designed the model, executed and wrote the manuscript and assisted by O C I and K. C N.

Corresponding author

Correspondence to Chukwuma Moses Anoruo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoruo, C.M., Ibe, O.C. & Ndubuisi, K.N. Aerosol Load-Cloud Cover Correlation: A Potential Clue for the Investigation of Aerosol Indirect Impact on Climate of Europe and Africa. Aerosol Sci Eng 7, 23–35 (2023). https://doi.org/10.1007/s41810-022-00160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-022-00160-7

Keywords

Navigation