Skip to main content

Advertisement

Log in

Seasonal Transport Pathway and Sources of Carbonaceous Aerosols at an Urban Site of Eastern Himalaya

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, we examined the seasonal transport pathways of carbonaceous species [Organic Carbon (OC), Elemental Carbon (EC), Water-Soluble Organic Carbon (WSOC), Primary Organic Carbon (POC), Secondary Organic Carbon (SOC), and Total Carbonaceous Aerosols (TCAs)] of PM2.5 and PM10 over a semi-urban high-altitude site of Darjeeling (27.041ºN, 88.266ºE, 2200 m above mean sea level (amsl); an eastern Himalayan region), India during August 2018–July 2019. The annual average concentrations of PM2.5 and PM10 were  37 ± 12 µg m−3 and 55 ± 18 µg m−3, respectively that was within but quite close to the threshold limit of National Ambient Air Quality Standards (NAAQS) (annual 60 μg m−3 for PM10; and 40 μg m−3 for PM2.5). The seasonal average concentration of OC in PM2.5 was highest in pre-monsoon (4.2 ± 1.7 µg m−3) > post-monsoon (4.0 ± 1.6 µg m−3) > winter (3.3 ± 1.5 µg m−3) > monsoon (2.2 ± 0.9 µg m−3) whereas OC in PM10, in the order of highest in post-monsoon (5.9 ± 2.4 µg m−3) > winter (5.4 ± 2.0 µg m−3) > pre-monsoon (5.2 ± 2.1 µg m−3) > monsoon (3.6 ± 0.9 µg m−3). Similar seasonal variation in case of EC in both PM2.5 (winter 1.8 ± 0.8 µg m−3; pre-monsoon 2.2 ± 0.9 µg m−3; monsoon 1.2 ± 0.4 µg m−3; post-monsoon 2.2 ± 1.1 µg m−3) and PM10 (winter 2.7 ± 1.0 µg m−3; pre-monsoon 3.0 ± 1.1 µg m−3; monsoon 1.2 ± 0.4 µg m−3; post-monsoon 1.9 ± 1.2 µg m−3) were observed during the study period. Based on different altitudes (100, 500, 1000 m), the seasonal backward trajectory and its concentration-weighted trajectory (CWT) analysis reveal the local, Indo-Gangetic Plain (IGP), the Thar desert, semi-arid, central highlands, Nepal, and the Bay of Bengal (BoB) as the common pollutant transporting regions to the observational site of Darjeeling. Also, its cluster analysis at 500 m above ground level (AGL) indicates that air mass originates mainly from 3 sides [western region, Thar desert (17.6%); north-western region, Nepal (45.1%); southern region, Bangladesh (37.3%)] during the study. Due to high tourist influx in pre-monsoon (peak tourist season), the maximum contribution of carbonaceous aerosols was mainly from the vehicular sources, coal combustion, transboundary pollutants, biomass burning in the IGP region, and the formation of secondary organic aerosols (SOA). Besides, active Terra and Aqua MODIS fire and thermal anomalies (≥ 80 per cent) indicated the maximum prevalence of fire spots during pre-monsoon across India (except the Thar desert) followed by post-monsoon (due to crop-residue burning) in Punjab and Haryana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Google map)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets developed during the current study are available from the corresponding author on reasonable request.

References

  • Aamaas B, Myhre G, Samset BH, Stjern CW (2017) The climate impacts of current black carbon and organic carbon emissions. CICERO Report

  • Adak A, Chatterjee A, Singh AK, Sarkar C, Ghosh S, Raha S (2013) Atmospheric fine mode particulates at eastern Himalaya, India: role of meteorology, long-range transport, and local anthropogenic sources. Aerosol Air Quality Res 14(1):440–450

    Article  Google Scholar 

  • Alves CA, Pio CA (2005) Secondary organic compounds in atmospheric aerosols: speciation and formation mechanisms. J Braz Chem Soc 16(5):1017–1029

    Article  Google Scholar 

  • Apollo M (2017). The population of Himalayan regions–by the numbers: Past, present, and future. In: Efe R, Öztürk M (eds) Contemporary studies in environment and tourism, Scholars Publishing, Cambridge, p 145–160

  • Arhami M, Shahne MZ, Hosseini V, Haghighat NR, Lai AM, Schauer JJ (2018) Seasonal trends in the composition and sources of PM2.5 and carbonaceous aerosol in Tehran. Iran Environ Pollution 239:69–81

    Article  Google Scholar 

  • Babu S, Mohapatra KP, Das A, Yadav GS, Singh R, Chandra P, Avasthe RK, Kumar A, Devi MT, Singh VK, Panwar AS (2021) Integrated farming systems: climate-resilient sustainable food production system in the indian himalayan region. In: Exploring synergies and trade-offs between climate change and the sustainable development goals, Springer, Singapore, pp 119–143

  • Bhattacharyya T, Chatterjee A, Das SK, Singh S, Ghosh SK (2020) Study of the fair-weather surface atmospheric electric field at high altitude station in Eastern Himalayas. Atmosp Res 239:104909

    Article  Google Scholar 

  • Bikkina S, Sarin M (2019) Brown carbon in the continental outflow to the North Indian Ocean. Environ Sci 21(6):970–987

    Google Scholar 

  • Cajee L (2018) Physical aspects of the darjeeling himalaya: understanding from a geographical perspective. IOSR J Human Soc Sci 2(3):66–79

    Google Scholar 

  • Callén MS, De la Cruz MT, López JM, Mastral AM (2011) PAH in airborne particulate matter: carcinogenic character of PM10 samples and assessment of the energy generation impact. Fuel Process Technol 92(2):176–182

    Article  Google Scholar 

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781

    Article  Google Scholar 

  • Chatterjee A, Adak A, Singh AK, Srivastava MK, Ghosh SK, Tiwari S, Devara PCS, Raha S (2010) Aerosol chemistry over a high-altitude station at the northeastern Himalayas. India. Plos One 5(6):e11122

    Article  Google Scholar 

  • Chatterjee A, Dutta M, Ghosh A, Ghosh SK, Roy A (2020) Relative role of black carbon and sea-salt aerosols as cloud condensation nuclei over a high-altitude urban atmosphere in eastern Himalaya. Sci Total Environ 742:140468

    Article  Google Scholar 

  • Chatterjee A, Mukherjee S, Dutta M, Ghosh A, Ghosh SK, Roy A (2021) High rise in carbonaceous aerosols under very low anthropogenic emissions over eastern Himalaya, India: Impact of lockdown for COVID-19 outbreak. Atmosp Environ 244:117947

    Article  Google Scholar 

  • Chen Y, Xie S, Luo B (2018) Seasonal variations of transport pathways and potential sources of PM2.5 in Chengdu, China (2012–2013). Front Environ Sci Eng 12(1):12

  • Chen CH, Wu CD, Chiang HC, Chu D, Lee KY, Lin WY, Yeh JI, Tsai KW, Guo YLL (2019) The effects of fine and coarse particulate matter on lung function among the elderly. Sci Rep 9(1):1–8

    Google Scholar 

  • Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmüller H, Fung K (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38(16):4414–4422

    Article  Google Scholar 

  • Dimitriou K, Remoundaki E, Mantas E, Kassomenos P (2015) Spatial distribution of source areas of PM2.5 by concentration weighted trajectory (CWT) model applied in PM2.5 concentration and composition data. Atmos Environ 116:138–145

    Article  Google Scholar 

  • Dinoi A, Cesari D, Marinoni A, Bonasoni P, Riccio A, Chianese E, Tirimberio G, Naccarato A, Sprovieri F, Andreoli V, Moretti S, Gulli D, Calidonna CR, Ammascato I, Contini D (2017) Intercomparison of carbon content in PM2.5 and PM10 collected at five measurement sites in southern Italy. Atmosphere 8(12):243

  • Du Y, Xu X, Chu M, Guo Y, Wang J (2016) Air particulate matter and cardiovascular disease: the epidemiological, biomedical, and clinical evidence. J Thorac Dis 8(1):E8

    Google Scholar 

  • Dumka UC, Tiwari S, Kaskaoutis DG, Soni VK, Safai PD, Attri SD (2019) Aerosol and pollutant characteristics in Delhi during a winter research campaign. Environ Sci Pollut Res 26(4):3771–3794

    Article  Google Scholar 

  • Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P (2016) Aeroparticles, composition, and lung diseases. Front Immunol 7:3

    Article  Google Scholar 

  • Gajananda K, Kuniyal JC, Momin GA, Rao PSP, Safai PD, Tiwari S, Ali K (2005) Trend of atmospheric aerosols over the north northwestern Himalayan region, India. Atmos Environ 39:4817–4825

    Article  Google Scholar 

  • Ghosh SK, Raha S, Abhijit C (2014) The Darjeeling facility: Cosmic rays and atmospheric sciences. Proc Indian Natl Sci Acad-A (india) 80:791–814

    Article  Google Scholar 

  • Ghosh S, Biswas J, Guttikunda S, Roychowdhury S, Nayak M (2015) An investigation of potential regional and local source regions affecting fine particulate matter concentrations in Delhi, India. J Air Waste Manag Assoc 65(2):218–231

    Article  Google Scholar 

  • Hanigan IC, Broome RA, Chaston TB, Cope M, Dennekamp M, Heyworth JS, Heathcote K, Horsley JA, Jalaludin B, Jegasothy E, Johnston FH, Knibbs LD, Pereira G, Vardoulakis S, Hoorn SV, Morgan GG (2021) Avoidable mortality attributable to anthropogenic fine particulate matter (PM2.5) in Australia. Int J Environ Res Public Health 18(1):254

  • Hegde P, Kawamura K (2012) Seasonal variations of water-soluble organic carbon, dicarboxylic acids, keto carboxylic acids, and α-dicarbonyls in Central Himalayan aerosols. Atmos Chem Phys 12(14):6645–6665

    Article  Google Scholar 

  • Hegde P, Vyas BM, Aswini AR, Aryasree S, Nair PR (2020) Carbonaceous and water-soluble inorganic aerosols over a semi-arid location in northwest India: Seasonal variations and source characteristics. J Arid Environ 172:104018

  • Hernández-Ceballos MÁ, De Felice L (2019) Air mass trajectories to estimate the “Most Likely” areas to be affected by the release of hazardous materials in the atmosphere—feasibility study. Atmosphere 10(5):253

    Article  Google Scholar 

  • Jafar HA, Harrison RM (2020) Spatial and temporal trends in carbonaceous aerosols in the United Kingdom. Atmospheric Pollution Research

  • Jin Y, Yan C, Sullivan AP, Liu Y, Wang X, Dong H, Chen S, Zeng L, Collett JL Jr, Zheng M (2020) Significant contribution of primary sources to water-soluble organic carbon during spring in Beijing. China Atmosphere 11(4):395

    Article  Google Scholar 

  • Joshi H, Naja M, Gupta T (2020) In-situ Measurements of aerosols from the high-altitude location in the central Himalayas. In: Measurement, analysis and remediation of environmental pollutants, Springer, Singapore, pp 59–89

  • Kim HJ, Choi MG, Park MK, Seo YR (2017) Predictive and prognostic biomarkers of respiratory diseases due to particulate matter exposure. J Cancer Prevention 22(1):6

    Article  Google Scholar 

  • Kirillova EN, Andersson A, Sheesley RJ, Kruså M, Praveen PS, Budhavant K, Safai PD, Rao PSP, Gustafsson Ö (2013) 13C-and 14C-based study of sources and atmospheric processing of water-soluble organic carbon (WSOC) in South Asian aerosols. J Geophys Res 118(2):614–626

    Article  Google Scholar 

  • Kontuľ I, Kaizer J, Ješkovský M, Steier P, Povinec PP (2020) Radiocarbon analysis of carbonaceous aerosols in Bratislava, Slovakia. J Environ Radioact 218:106221

  • Kumar A, Attri AK (2015) Biomass combustion a dominant source of carbonaceous aerosols in the ambient environment of the Western Himalayas. Aerosol Air Quality Res 16(3):519–529

    Article  Google Scholar 

  • Lamsal P, Kumar L, Shabani F, Atreya K (2017) The greening of the Himalayas and Tibetan Plateau under climate change. Global Planet Change 159:77–92

    Article  Google Scholar 

  • Li C, Yan F, Kang S, Yan C, Hu Z, Chen P, Gao S, Zhang C, He C, Kaspari S, Stubbins A (2020a) Carbonaceous matter in the atmosphere and glaciers of the Himalayas and the Tibetan plateau: an investigative review. Environ Int 146:106281

    Article  Google Scholar 

  • Li Y, Zhao W, Fu J, Liu Z, Li C, Zhang J, He C, Wang K (2020b) Joint governance regions and major prevention periods of PM2.5 pollution in china based on wavelet analysis and concentration-weighted trajectory. Sustain 12(5):2019

  • Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14(13):1262

    Article  Google Scholar 

  • Mahapatra PS, Sinha PR, Boopathy R, Das T, Mohanty S, Sahu SC, Gurjar BR (2018) Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: role of local meteorology and long-range transport. Atmos Res 199:145–158

    Article  Google Scholar 

  • Markou MT, Kassomenos P (2010) Cluster analysis of 5 years of back trajectories arriving in Athens. Greece Atmosp Res 98(2–4):438–457

    Article  Google Scholar 

  • Masiol M, Hopke PK, Felton HD, Frank BP, Rattigan OV, Wurth MJ, LaDuke GH (2017) Analysis of major air pollutants and submicron particles in New York City and Long Island. Atmos Environ 148:203–214

    Article  Google Scholar 

  • NESCAUM (2002) Trajectory analysis of potential source regions affecting class I areas in the MANE-VU region. Northeast States for Coordinated Air-Use Management, Boston, MA

  • Ojha N, Sharma A, Kumar M, Girach I, Ansari TU, Sharma SK, Singh N, Pozzer A, Gunthe SS (2020) On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci Rep 10(1):1–9

    Article  Google Scholar 

  • Panicker AS, Kumar VA, Raju MP, Pandithurai G, Safai PD, Beig G, Das S (2021) CCN activation of carbonaceous aerosols from different combustion emissions sources: a laboratory study. Atmosp Res 248:105252

    Article  Google Scholar 

  • Pant P, Harrison RM (2012) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12

    Article  Google Scholar 

  • Peters A (2005) Particulate matter and heart disease: evidence from epidemiological studies. Toxicol Appl Pharmacol 207(2):477–482

    Article  Google Scholar 

  • Pintér M, Utry N, Ajtai T, Kiss-Albert G, Jancsek-Turóczi B, Imre K, Palágyi A, Manczinger L, Vágvölgyi C, Horváth E, Kováts N, Gelencsér A, Szabó G, Bozóki Z (2017) Optical properties, chemical composition, and the toxicological potential of urban particulate matter. Aerosol and Air Quality Research 17(6):1515–1526

    Article  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742

    Article  Google Scholar 

  • Rai A, Mukherjee S, Chatterjee A, Choudhary N, Kotnala G, Mandal TK, Sharma SK (2020) Seasonal variation of OC, EC, and WSOC of PM10 and Their CWT analysis over the Eastern Himalaya. Aerosol Sci Eng 4(1):26–40

    Article  Google Scholar 

  • Rajput P, Sarin M, Kundu SS (2013) Atmospheric particulate matter (PM2.5), EC, OC, WSOC, and PAHs from NE–Himalaya: abundances and chemical characteristics. Atmos Pollut Res 4(2):214–221

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC, and WSOC over Northern India. J Aerosol Sci 41(1):88–98

    Article  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2012) Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environ Sci Technol 46(2):686–695

  • Ram K, Bhattarai H, Cong Z (2020) Chemical components and distributions of aerosols in the third pole. In: Water quality in the third pole, Elsevier, pp 43–67

  • Ramachandran S, Rupakheti M (2021) Inter-annual and seasonal variations in optical and physical characteristics of columnar aerosols over the Pokhara Valley in the Himalayan foothills. Atmosp Res 248:105254

    Article  Google Scholar 

  • Ramachandran S, Rupakheti M, Lawrence MG (2020) Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Sci Rep 10(1):1–17

    Article  Google Scholar 

  • Roy A, Chatterjee A, Tiwari S, Sarkar C, Das SK, Ghosh SK, Raha S (2016) Precipitation chemistry over urban, rural, and high-altitude Himalayan stations in eastern India. Atmos Res 181:44–53

    Article  Google Scholar 

  • Saikawa E, Panday A, Kang S, Gautam R, Zusman E, Cong ZSES, Adhikary B (2019). Air pollution in the hindu kush Himalaya. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The hindu kush Himalaya assessment—mountains, climate change, sustainability and people, Springer Nature Switzerland AG, Cham, pp 339-387

  • Sarkar C, Chatterjee A, Singh AK, Ghosh SK, Raha S (2015) Characterization of black carbon aerosols over darjeeling-a high altitude himalayan station in eastern India. Aerosol Air Qual Res 15:465–478

    Article  Google Scholar 

  • Sarkar C, Roy A, Chatterjee A, Ghosh SK, Raha S (2019) Factors controlling the long-term (2009–2015) trend of PM2.5 and black carbon aerosols at eastern Himalaya. India Sci Total Environ 656:280–296

    Article  Google Scholar 

  • Sen A, Karapurkar SG, Saxena M, Shenoy DM, Chaterjee A, Choudhuri AK, Das T, Khan AH, Kuniyal JC, Pal S, Singh DP, Sharma SK, Kotnala RK, Mandal TK (2018) Stable carbon and nitrogen isotopic composition of PM10 over Indo-Gangetic Plains (IGP), adjoining regions, and Indo-Himalayan Range (IHR) during a winter 2014 campaign. Environ Sci Pollut Res 25(26):26279–26296

  • Sharma SK, Mandal TK, Sharma C, Kuniyal JC, Joshi R, Dhyani PP, Rohtash, Ghayas H, Gupta NC, Sharma P, Saxena M, Sharma A, Arya BC, Kumar A (2014) Measurements of particulate (PM2.5), BC, and trace gases over the north-western Himalayan region of India. MAPAN 29(4):243–253

  • Sharma SK, Mandal TK, Shenoy DM, Bardhan P, Srivastava MK, Chatterjee A, Saxena M, Saraswati SBP, Ghosh SK (2015) Variation of stable carbon and nitrogen isotopes composition of PM10 over Indo Gangetic Plain of India. Bull Environ Contam Toxicol 95(5):661–669

  • Sharma SK, Agarwal P, Mandal TK, Karapurkar SG, Shenoy DM, Peshin SK et al (2017) Study on ambient air quality of megacity Delhi, India during odd-even Strategy. MAPAN 32(2):155–165

  • Sharma SK, Mandal TK, Dey AK, Deb N, Jain S, Saxena M, Pal S, Choudhuri AK, Yadav S (2018) Carbonaceous and inorganic species in PM10 during wintertime over Giridih, Jharkhand (India). J Atmos Chem 75:219–233

  • Sharma SK, Choudhary N, Kotnala G, Das D, Mukherjee S, Ghosh A, Vijayan N, Rai A, Chatterjee A, Mandal TK (2020). Wintertime carbonaceous species and trace metals in PM10 in Darjeeling: a high altitude town in the eastern Himalayas. Urban Climate 34:100668

  • Sharma SK, Mukherjee S, Choudhary N, Rai A, Ghosh A, Chatterjee A, Vijayan N, Mandal TK (2021) Seasonal variation and sources of carbonaceous species and elements in PM2.5 and PM10 over the Eastern Himalaya. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-14361-z.

  • Silva RA, West JJ, Lamarque JF, Shindell DT, Collins WJ, Dalsoren S, Faluvegi G, Folberth G, Horowitz LW, Nagashima T, Naik V, Rumbold ST, Sudo K, Takemura T, Bergmann D, Smith PC, Cionni I, Doherty RM, Eyring V, Josse B, MacKenzie IA, Plummer D, Righi M, Stevenson DS, Strode S, Szopa S, , Zeng, G. (2016) The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos Chem Phys 16(15):9847

    Article  Google Scholar 

  • Srinivas B, Sarin MM (2014) PM2.5, EC, and OC in an atmospheric outflow from the Indo-Gangetic Plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor. Sci Total Environ 487:196–205

    Article  Google Scholar 

  • Srivastava P, Naja M (2020) Characteristics of carbonaceous aerosols derived from long-term high-resolution measurements at a high-altitude site in the central Himalayas: radiative forcing estimates and role of meteorology and biomass burning. Environ Sci Pollut Res 1–17

  • Su L, Yuan Z, Fung JC, Lau AK (2015) A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci Total Environ 506:527–537

    Article  Google Scholar 

  • Suzuki Y, Matsunaga K, Yamashita Y (2020) Assignment of PM2.5 sources in western Japan by non-negative matrix factorization of concentration-weighted trajectories of GED-ICP-MS/MS element concentrations. Environ Pollut 270:116054

  • Tiwari S, Dumka UC, Gautam AS, Kaskaoutis DG, Srivastava AK, Bisht DS, Chakrabarty RK, Sumlin BJ, Solmon F (2017) Assessment of PM2.5 and PM10 over Guwahati in Brahmaputra River Valley: Temporal evolution, source apportionment, and meteorological dependence. Atmosp Pollution Res 8(1):13–28

  • Tripathee L, Kang S, Chen P, Bhattarai H, Guo J, Shrestha KL, Sharma CM, Ghimire PS, Huang J (2021) Water-soluble organic and inorganic nitrogen in ambient aerosols over the Himalayan middle hills: Seasonality, sources, and transport pathways. Atmosp Res 250:105376

    Article  Google Scholar 

  • Tse-ring K, Sharma E, Chettri N, Shrestha AB (2010) Climate change vulnerability of mountain ecosystems in the Eastern Himalayas–Synthesis Report. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal

  • Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24(8):938–939

    Article  Google Scholar 

  • Wei N, Ma C, Liu J, Wang G, Liu W, Zhuoga D, Xiao D, Yao J (2019) Size-segregated characteristics of carbonaceous aerosols during the monsoon and non-monsoon seasons in Lhasa in the Tibetan Plateau. Atmosphere 10(3):157

    Article  Google Scholar 

  • World Health Organization, Regional Office for Europe & Joint (2006) Health risks of particulate matter from long-range transboundary air pollution (No. EUR/05/5046028). WHO Regional Office for Europe, Copenhagen

  • WHO (2016) Ambient air pollution: A global assessment of exposure and burden of disease

  • Xin Y, Wang G, Chen L (2016) Identification of long-range transport pathways and potential sources of PM10 in the Tibetan Plateau uplift area: Case study of Xining, China, in 2014. Aerosol Air Quality Research 16(4):1044–1054

    Article  Google Scholar 

  • Xu Z, Wen T, Li X, Wang J, Wang Y (2015) Characteristics of carbonaceous aerosols in Beijing based on two–year observation. Atmos Pollut Res 6(2):202–208

    Article  Google Scholar 

  • Yang W, Wang G, Bi C (2017) Analysis of long-range transport effects on PM2.5 during a short severe haze in Beijing. China Aerosol Air Qual Res 17:1610–1622

    Article  Google Scholar 

  • Yang W, Xie S, Zhang Z, Hu J, Zhang L, Lei X, Zhong L, Hao Y, Shi F (2019) Characteristics and sources of carbonaceous aerosol across urban and rural sites in a rapidly urbanized but low-level industrialized city in the Sichuan Basin. China Environ Sci Pollution Res 26(26):26646–26663

    Article  Google Scholar 

  • Yu GH, Cho SY, Bae MS, Park SS (2014) Difference in production routes of water-soluble organic carbon in PM2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Environ Sci 16(7):1726–1736

  • Yuan Q, Xu J, Liu L, Zhang A, Liu Y, Zhang J, Wan X, Li M, Qin K, Cong Z, Wang Y, Kang S, Shi Z, Pósfai M, Li W (2020a) Evidence for Large Amounts of Brown Carbonaceous Tarballs in the Himalayan Atmosphere. Environ Sci Technology Letters

  • Yuan Q, Wan X, Cong Z, Li M, Liu L, Shu S, Liu R, Xu L, Zhang J, Ding X, Li W (2020b) In situ observations of light-absorbing carbonaceous aerosols at himalaya: analysis of the south asian sources and trans-himalayan valleys transport pathways. J Geophys Res 125(18):e2020JD032615

  • Zhang Q, Worsnop DR, Canangaratna MR, Jimenez JL (2005) Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources and processes of organic aerosol. Atmos Chem Phys 5:3289–3311

    Article  Google Scholar 

  • Zhang J, Tong L, Huang Z, Zhang H, He M, Dai X, Zheng J, Xiao H (2018) Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China. Sci Total Environ 639:793–803

    Article  Google Scholar 

  • Zhang X, Li Z, Wang F, Song M. Zhou X, Ming J (2020) Carbonaceous Aerosols in PM1, PM2.5, and PM10 Size Fractions over the Lanzhou City, Northwest China. Atmos 11(12):1368

  • Zhu L, Zhang Y, Kan X, Wang J (2018) Transport paths and identification for potential sources of haze pollution in the yangtze river delta urban agglomeration from 2014 to 2017. Atmosphere 9(12):502

    Article  Google Scholar 

  • Zhu JJ, Chen YC, Shie RH, Liu ZS, Hsu CY (2020) Predicting carbonaceous aerosols and identifying their source contribution with advanced approaches. Chemosphere 128966

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-NPL and Head, Environmental Sciences and Biomedical Metrology Division (ES&BMD), CSIR–NPL for their encouragement and support. Authors are also thankful to Mr. Bivek Gurung and Mrs. Yashodhara Yadav, Bose Institute, Darjeeling for PM sampling and providing the relevant data-sets. Authors thankfully acknowledge the NOAA Air Resources Laboratory for download of the air mass trajectories (http://www.arl.noaa.gov/ready/hysplit4.html).

Funding

The authors are thankfully acknowledged the Department of Science and Technology, Ministry of Science and Technology (Government of India), New Delhi-110016, India for providing financial support for this study (DST/CCP/Aerosol/88/2017).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study were planned by SKS, RKK, TKM, AC; Data collection and analysis were performed by AR, SM, NC and AG; the first draft was written by AR and SKS. Data interpretation was carried out by AR, AC, TKM, RKK and SKS. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to S. K. Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, A., Mukherjee, S., Choudhary, N. et al. Seasonal Transport Pathway and Sources of Carbonaceous Aerosols at an Urban Site of Eastern Himalaya. Aerosol Sci Eng 5, 318–343 (2021). https://doi.org/10.1007/s41810-021-00106-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-021-00106-5

Keywords

Navigation