Skip to main content
Log in

Effect of the Addition of Turmeric Hydroalcoholic Extract on Physicochemical Properties of Chitosan Films and Shelf Life Extension of Minimally Processed Pineapple

  • Research Article
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

This research assessed the effect of the addition of turmeric (Curcuma longa) hydroalcoholic extract (HET) and polymer concentration on the physicochemical properties of chitosan films at 1.5 and 2% (w/v), as well as on the extension of the shelf life of minimally processed pineapple (MPP) from the variety Golden Sweet (MD-2) stored at 5 ± 1 °C. The solutions were prepared in lactic acid solution 1% (v/v), with further addition of 0.1% (v/v) of Tween 80 and HET at 0.2 and 0.4% (v/v). Fruits were peeled and cut into quarters of 1 cm thick slices and were then divided at random according to the coatings to be applied: PQ, 1.5% (w/v) chitosan coating; PQC, 1.5% (w/v) chitosan coating with 0.4% (w/v) HET; and PC, control treatment. The concentrations of chitosan and HET did not affect the water vapor permeability, water solubility and apparent opacity of the films. The tensile strength increased with the concentration of chitosan and HET, while the elongation at break decreased with the increasing polymer concentration. It increased the brightness of films with the concentration of chitosan and HET. The b* values corresponded to the yellow color of films, and a* were associated with a greenish hue provided by the HET. The shelf life of MPP was increased by 33.33% with the application of chitosan and HET coating due to higher sensory quality, and no visible fungal spoilage after 12 days of storage compared to 8 and 10 days for uncoated and chitosan-coated products, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT 43:837–842

    Article  Google Scholar 

  2. Ak T, Gülçin Ï (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  Google Scholar 

  3. Andreuccetti C, Carvalho RA, Galicia-García T, Martinez-Bustos F, González-Nuñez R, Grosso CRF (2012) Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: a preliminary study. J Food Eng 113:33–40

    Article  Google Scholar 

  4. Antoniolli LR, Benedetti BC, Souza MSM (2011) Efeito do cloreto de cálcio na qualidade deabacaxi “Pérola” mínimamente procesado. Pesqui Agropecu Bras 38(9):1105–1110

    Article  Google Scholar 

  5. Antoniolli LR, Benedetti BC, Souza MSM, Garruti D, Borges MF (2012) Shelf life of minimally processed pineapples treated with ascorbic and citric acids. Bragantia 71(3):447–453

    Article  Google Scholar 

  6. AOAC (2019) Official methods of analysis. 21ra Edición. Association of Official Analytical Chemists, Gaithersburg, Maryland, EE.UU

  7. Arutselvi R, Balasaravanan T, Ponmurugan P, Muthu N, Suresh P (2012) Phytochemical screening and comparative study of antimicrobial activity of leaves and rhizomes of turmeric varieties. Asian J Plant Sci Res 2(2):212–219

    Google Scholar 

  8. ASTM D 882-91 (1995) Standard test methods for tensile properties of thin plastic sheeting. In: Annual book of ASTM standards. American Society for Testing and Materials. ASTM International, Philadelphia

    Google Scholar 

  9. Basantia NC, Arora S, Seth R, Singh A (2000) Milk proteins in the preparation of edible coatings. Indian Food Ind 19:36–47

    Google Scholar 

  10. Bierhals VS, Chiumarelli M, Hubinger MD (2011) Effect of cassava starch coating on quality and shelf life of fresh-cut pineapple (Ananas comosus L. Merril cv. “Perola”). J Food Sci 76(1):E62–E72

    Article  Google Scholar 

  11. Bitencourt CM, Fávaro-Trindade CS, Sobral PJA, Carvalho RA (2014) Gelatin-based films additivated with curcuma ethanol extract: antioxidant activity and physical properties of films. Food Hydrocoll 40:145–152

    Article  Google Scholar 

  12. Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch-chitosan films. J Food Eng 118:271–278

    Article  Google Scholar 

  13. Butnaru E, Stoleru E, Brebu MA, Darie-Nita RN, Bargan A, Vasile C (2019) Chitosan-based bionanocomposite films prepared by emulsion technique for food preservation. Materials 12(3):373

    Article  Google Scholar 

  14. Casariego A, Souza BWS, Cerqueira MA, Teixeira JA, Cruz L, Díaz R, Vicente AA (2009) Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocoll 23:1895–1902

    Article  Google Scholar 

  15. Cervera MF, Heinämäki J, Krogars K, Jörgensen AM, Iraizoz A, Yliruusi J (2004) Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols. J Pharm Sci Technol 5:109–114

    Google Scholar 

  16. Chatterjee S, Padwal SR, Thomas P (1999) Effect of γ-irradiation on the antioxidant activity of turmeric (Curcuma longa L.) extracts. Food Res Int 32:487–490

    Article  Google Scholar 

  17. Cho S, Rhee C (2004) Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT 37:833–839

    Article  Google Scholar 

  18. CIE LAB (1976) Colorimetry: official recommendations of the international commission on illumination. Paris, Bureau Central de la CIE

  19. Damasio MH, Costell E (1991) Análisis sensorial descriptivo: generación de descriptores y selección de catadores. Rev Agroquim Tecnol Aliment 31(2):165–177

    Google Scholar 

  20. Danyen MS, Boodia N, Ruggoo A (2011) Effect of cutting shapes and thicknesses on the quality of minimally processed pineapple (Ananas comosus) cv. ‘Queen Victoria.’ Afr J Food Agric Nutr Dev 11(7):5525–5538

    Google Scholar 

  21. Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15:3774–3780

    Article  Google Scholar 

  22. De la Paz N, Fernández M, López OD, Nogueira A, García CM, Pérez D, Tobella JL, Montes de Oca Y, Díaz D (2012) Optimización del proceso de obtención de quitosana derivada de la quitina de langosta. Rev Iberoam Polím 13(3):103–116

    Google Scholar 

  23. Depan D, Kumar A, Singh RP (2006) Preparation and characterization of novel hybrid of chitosan-g-lactic acid and montmorillonite. J Biomed Mater Res Part A 78:372–382

    Article  Google Scholar 

  24. Di Cagno R, Cardinali G, Minervini G, Antonielli L, Rizzello CG, Ricciuti P, Gobbetti M (2010) Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food Microbiol 27(3):381–389

    Article  Google Scholar 

  25. Du WX, Olsen CW, Avena-Bustilios RJ, Mchugh TH, Levin CE, Friedman M (2009) Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. J Food Sci 74:372–378

    Article  Google Scholar 

  26. Falco A, Martínez W, Rodríguez JL, Núñez de Villavicencio M, Sevillano E (2011) Actividad antimicrobiana de extractos hidroetanólicos de limoncillo (Cymbopogon citratus) y cúrcuma (Curcuma longa). Rev Venez Cienc Tecnol Aliment 2(1):85–93

    Google Scholar 

  27. Fernández M, Heinämäki J, Rasanen M, Maunu SL, Karjalainen M, Nieto OM, Iraizoz A, Yliruusi J (2004) Solid-state characterization of chitosans derived from lobster chitin. Carbohydr Polym 58:401–408

    Article  Google Scholar 

  28. García MA, García YP, Calderín L, de la Paz N (2015) Empleo de coberturas de sales ácidas de quitosana en la conservación de piña mínimamente procesada. Cienc Tecnol Aliment 25(1):31–36

    Google Scholar 

  29. García MA, Pérez L, de la Paz N, González J, Rapado M, Casariego A (2015) Effect of molecular weight reduction by gamma irradiation on chitosan films properties. Mater Sci Eng C 55:174–180

    Article  Google Scholar 

  30. Georgantelis D, Ambrosiadis I, Katikou P, Blekas G, Georgakis SA (2007) Effect of rosemary extract, chitosan and α-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 °C. Meat Sci 76:172–181

    Article  Google Scholar 

  31. Gómez-Estaca J, Giménez B, Montero P, Gómez-Guillén MC (2009) Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J Food Eng 92:78–85

    Article  Google Scholar 

  32. Gómez-Estaca J, Montero P, Fernández-Martín F, Alemán A, Gómez-Guillén MC (2009) Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chem 112:18–25

    Article  Google Scholar 

  33. Gontard N, Guilbert S, Cuq JL (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J Food Eng 57:190–195

    Google Scholar 

  34. Govindarajan VS (1980) Turmeric - chemistry, technology, and quality. Crit Rev Food Sci Nutr 12:199–301

    Article  Google Scholar 

  35. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  Google Scholar 

  36. Hajare SN, Dhokane VS, Shashidhar R, Sharma A, Bandekar JR (2006) Radiation processing of minimally processed carrot (Daucus carota) and cucumber (Cucumis sativus) to ensure safety: effect on nutritional and sensory quality. J Food Sci 71:198–203

    Article  Google Scholar 

  37. ISO 13299 (2016) Sensory analysis-methodology-general guidance for establishing a sensory profile

  38. Jayaprakasha GK, Jaganmohan L, Sakariah KK (2006) Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 98:720–724

    Article  Google Scholar 

  39. Jing Y, Huang J, Yu X (2019) Maintenance of the antioxidant capacity of fresh-cut pineapple by procyanidin-grafted chitosan. Postharvest Biol Technol 154:79–86

    Article  Google Scholar 

  40. Kader AA (2002) Postharvest technology of horticultural crops, 3rd edn. University of California, Agriculture and Natural Resources, Publication 3311, p 535

  41. Kalaycıoğlu Z, Torlak E, Akın-Evingür G, Özen I, Erim FB (2017) Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol 101:882–888

    Article  Google Scholar 

  42. Katz PS, Trask AJ, Lucchesi PA (2009) Curcuminoids: spicing up sympathovagal tone. Nutrition 25:879–880

    Article  Google Scholar 

  43. Kowsalya R, Krishnaveni M (2011) Extraction and antibacterial studies of curcumin. J Pure Appl Microbiol 5(1):217–321

    Google Scholar 

  44. Lian H, Shi J, Zhang X, Peng Y (2020) Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packag Shelf 23:100467

    Article  Google Scholar 

  45. Liu Y, Cai Y, Jiang X, Wu J, Le X (2016) Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocoll 52:564–572

    Article  Google Scholar 

  46. Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14:127–135

    Article  Google Scholar 

  47. Mantilla N, Castell-Perez ME, Gomes C, Moreira RG (2013) Multilayered antimicrobial edible coating and its effect on quality and shelf life of fresh-cut pineapple (Ananas comosus). LWT 51(1):37–43

    Article  Google Scholar 

  48. Marchessault RH, Ravenelle R, Zhu XX (2006) Polysaccharides for drug delivery and pharmaceutical applications. American Chemical Society, Washington

    Book  Google Scholar 

  49. Martínez-Ferrer M, Harper CJ (2005) Reduction in microbial growth and improvement of storage quality in fresh-cut pineapple after methyl jasmonate treatment. Food Qual 28(1):3–12

    Article  Google Scholar 

  50. Miranda S (2017) Determinación de Escherichia coli en bebidas de frutas mixtas no pasteurizadas comercializadas en establecimientos especializados en San Ramón, Alajuela. Rev Costarric Salud Pública 26(2):189–198

    Google Scholar 

  51. Mohammed M, Wickham LD (2005) Effect of antioxidants on postharvest quality attributes of fresh-cut pineapples. Acta Hortic 666:309–314. https://doi.org/10.17660/ActaHortic.2005.666.34

    Article  Google Scholar 

  52. Moradi M, Tajik H, Razavi S, Rasoul A, Malekinejad H, Aliakbarlu J, Hadian M (2012) Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT 46:477–484

    Article  Google Scholar 

  53. Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28:1303–1312

    Article  Google Scholar 

  54. Mounsey JS, O’Kennedy BT, Fenelon MA, Brodkorb A (2008) The effect of heating on β-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength. Food Hydrocoll 22:65–73

    Article  Google Scholar 

  55. NC-ISO 11035 (2015) Análisis sensorial. Identificación y selección de descriptores para el establecimiento de un perfil sensorial mediante un enfoque multidimensional. La Habana, Cuba

  56. Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C (2020) Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25:135

    Article  Google Scholar 

  57. NTE INEN 1529-8 (2016) Control microbiológico de los alimentos. Detección y recuento de Escherichia coli presuntiva por la técnica del número más probable. Ecuador

  58. NTE INEN-ISO 1842 (2013) Productos vegetales y de frutas. Determinación de pH. Ecuador

  59. NTE INEN-ISO 21527-1 (2013) Microbiología de alimentos y alimentos para animales. Método horizontal para la enumeración de mohos y levaduras. Parte 1: técnica de recuento de colonias en productos con actividad acuosa (aw) superior a 0,95. Ecuador

  60. NTE INEN-ISO 2173 (2013) Productos vegetales y de frutas. Determinación de sólidos solubles. Método refractométrico. Ecuador

  61. NTE INEN-ISO 4831 (2013) Control microbiológico de los alimentos. Determinación de microorganismos coliformes por la técnica del número más probable. Ecuador

  62. NTE INEN-ISO 4833 (2014) Microbiología de los alimentos para consumo humano y animal. Método horizontal para el recuento de microorganismos. Técnica de recuento de colonias a 30 °C. Ecuador

  63. NTE INEN-ISO 750 (2013) Productos vegetales y de frutas. Determinación de la acidez titulable. Ecuador

  64. Nunes R, Cordeiro M, Cabral F, Marques T, Quilty B, Moreira RMS, McGuinness GB (2016) FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Rev Matér 21:767–779

    Google Scholar 

  65. Ojagh SM, Rezaei M, Razavi SH, Hosseini SM (2010) Development and evaluation of o novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem 122:161–166

    Article  Google Scholar 

  66. Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M (2011) FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta A 79:784–788

    Article  Google Scholar 

  67. Parize A (2009) Desenvolvimento de sistemas de microparticulados e de filmes a base de quitosana e corante natural cúrcuma (doctoral thesis). Universidade Federal de Santa Catarina, Santa Catarina, Brasil

  68. Parize A, Stulzer H, Marghetti M, da Costa I, Rozone T (2012) Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying. Quim Nova 35:1127–1132

    Article  Google Scholar 

  69. Park SY, Marsh KS, Rhim JW (2002) Characteristics of different molecular weight chitosan films affected by the type of organic solvents. J Food Sci 67:104–197

    Article  Google Scholar 

  70. Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González-Martínez Ch (2013) Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocoll 30:272–280

    Article  Google Scholar 

  71. Peng Y, Wu Y, Li Y (2013) Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol 59:282–289

    Article  Google Scholar 

  72. Pizato S, Chevalier R, Dos Santos M, Da Costa T, Arévalo Pinedo R, Cortez Vega W (2019) Evaluation of the shelf-life extension of fresh-cut pineapple (Smooth cayenne) by application of different edible coatings. Br Food J 121(7):1592–1604

    Article  Google Scholar 

  73. Portes E, Gardrat C, Castellan A, Coma V (2009) Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivates exhibiting antibacterial and antioxidative properties. Carbohydr Polym 76:578–584

    Article  Google Scholar 

  74. Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT 38:859–865

    Article  Google Scholar 

  75. Priyadarshi R, Rhim JW (2020) Chitosan-based biodegradable functional films for food packaging applications. Innov Food Sci Emerg Technol 62:102346

    Article  Google Scholar 

  76. Schreiber SB, Bozell JJ, Hayes DG, Zivanovic S (2013) Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll 33:207–214

    Article  Google Scholar 

  77. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemloub M, Ojagh SM, Hosseini SM, Khaksar R (2013) Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol 52:116–124

    Article  Google Scholar 

  78. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775

    Article  Google Scholar 

  79. Uragami T, Matsuda T, Okuno H, Miyata T (1994) Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of ethanol solutions. J Membr Sci 88:243–251

    Article  Google Scholar 

  80. Valderrama N, Algecira NA, Albarracin W (2016) Efecto del almacenamiento sobre las propiedades físicas de las películas de quitosano con inclusión de aceites esenciales de tomillo y romero. Rev Matér 21:141–156

    Google Scholar 

  81. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66(2):395–413

    Article  Google Scholar 

  82. Wang L, Dong Y, Men H, Tong J, Zhou J (2013) Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll 32:35–41

    Article  Google Scholar 

  83. Wu J, Chen S, Ge S, Miao J, Li J, Zhang Q (2013) Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll 32:42–51

    Article  Google Scholar 

  84. Xu Y, Kim K, Hanna M, Nag D (2004) Chitosan-starch composite film: preparation and characterization. Ind Crop Prod 21:185–192

    Article  Google Scholar 

  85. Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691

    Article  Google Scholar 

  86. Yashaswini M, Iyer PR (2019) Chitosan based films incorporated with turmeric/clove/ginger essential oil for food packaging. J Nanomed Nanotechnol 10:537

    Google Scholar 

  87. Yeamsuksawat T, Liang J (2019) Characterization and release kinetic of crosslinked chitosan film incorporated with α-tocopherol. Food Packag Shelf 22:100415

    Article  Google Scholar 

  88. Yuan Q, Shah J, Hein S, Misra RD (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6:1140–1148

    Article  Google Scholar 

  89. Ziani K, Oses J, Coma V, Maté JI (2008) Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT 41:2159–2165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. García.

Ethics declarations

Conflict of interest

This research was developed with equipment and facilities from the Pharmacy and Food Institute, the Drugs Research and Development Center (Havana, Cuba) and the School of Engineering, Universidad Pontificia Bolivariana (Medellin, Colombia), without funding support. The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, D., García, M.A., de la Paz, N. et al. Effect of the Addition of Turmeric Hydroalcoholic Extract on Physicochemical Properties of Chitosan Films and Shelf Life Extension of Minimally Processed Pineapple. J Package Technol Res 5, 185–200 (2021). https://doi.org/10.1007/s41783-021-00122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-021-00122-3

Keywords

Navigation