Skip to main content
Log in

A comprehensive study on the charged-uncharged particle shielding features of (70 − x) CRT–30K2O–xBaO glass system

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The going study aims to investigate the charged-uncharged particles’ shielding performance of the (70 − x) CRT–30K2O–xBaO glass system for x = 0–20 mol% via the MCNPX simulation, analytical calculations, Phy-X: PSD, and SRIM software. For this purpose, three types of glasses coded as G-C1, G-C2, and G-C3 are irradiated by the 252Cf neutron source. Applying Watt Fission Distribution (WFD) and Doppler Effect (DE), the neutron-gamma photon spectra are extracted and the obtained results are shown graphically. The outcomes reveal that G-C1 can better shield neutrons among the rest of the chosen samples and a strong linear relationship is found between equivalent absorbed dose rate and Fast Neutron removal Cross Section (FNRCS; cm−1) with R2 = 0.99225. In addition, by increasing the density from 2.8232 g.cm−3 for sample coded as G-C1 to 3.2266 g.cm−3 for the sample coded as G-C3 an ascending order of (LAC)G-C1 < (LAC)G-C2 < (LAC)G-C3 is monitored and the best gamma photon-shielding competence is recorded for G-C3. Moreover, the glass samples’ Transmission Factor (TF) and Radiation Protection Efficiency (RPE) are evaluated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sopapan, P., Laopaiboon, J., Jaiboon, O., Yenchai, C., Laopaiboon, R.: Feasibility study of recycled CRT glass on elastic and radiation shielding properties used as X-ray and gamma-ray shielding materials. Prog. Nucl. Energy. 119, 103149 (2020)

    Article  CAS  Google Scholar 

  2. Zughbi A, Kharita MH, Shehada A, Determining optical and radiation characteristics of cathode ray tubes’ glass to be reused as radiation shielding glass. Rad. Phys. Chem. 136, 71–74, 2017. https://doi.org/10.1016/j.radphyschem.2017.02.035

  3. Mueller, J.R., Boehm, M.W., Drummond, C.: Direction of CRT waste glass processing: electronics recycling industry communication. Waste. Manage. 32, 1560–1565 (2012)

    Article  Google Scholar 

  4. Pauzi NNM, Jamil M, Hamid R, Abdin AZ, Zain MFM, The effects of using cathode ray tube (CRT) glass as coarse aggregates in high‑strength concrete subjected to high temperature, J. Mater. Cycles. Waste. Manag. (4), 2019. https://doi.org/10.1007/s10163-019-00893-7

  5. Karaahmet O, Cicek B, Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits, J. Air. Waste. Manag. Assoc. 69 (2019)

  6. Andreola, F., Barbieri, L., Corradi, A., Lancellotti, I.: CRT glass state of the art a case study: recycling in ceramic glazes. J. Eur. Ceram. Soc. 27, 1623–1629 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.009

    Article  CAS  Google Scholar 

  7. Raul Revelo J, Menegazzo AP, Ferreira EB, Cathode-Ray Tube panel glass replaces frit in transparent glazes for ceramic tiles. Ceram. Int. 44(12), 13790–13796 (2018). https://doi.org/10.1016/j.ceramint.2018.04.222

  8. Karaahmet O, Cicek B, Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits, J. Air. Waste. Manag. Assoc. 69(10), 1258–1266 (2019). https://doi.org/10.1080/10962247.2019.1654037

  9. Choi Y, Sun K Il, Choi S, Yang E Ik, Fundamental properties and radioactivity shielding characteristics of mortar specimen utilizing CRT waste glass as fine aggregate. J. Korea Inst. Struct. Maint. Insp. 23(1), 163–170 (2019).

  10. Giri, B.C., Masanta, M.: Optimal production policy for a closed-loop supply chain with stochastic lead time and learning in production. Scientia. Iranica. E. 26(5), 2936–2951 (2019)

    Google Scholar 

  11. Mahpour, A., Alvanchi, A., Mortaheb, M.M.: Applying materials waste quantification to cement waste reduction in residential buildings of Tehran: a case study. Scientia. Iranica. A. 26(5), 2633–2652 (2019)

    Google Scholar 

  12. Khabaz, R., Boodaghi, R., Benam, M.R., Zanganeh, V.: Estimation of photoneutron dosimetric characteristics in organs/tissues using an improved simple model of linac head. Appl. Radiat. Iso. 133, 88–94 (2018). https://doi.org/10.1016/j.apradiso.2017.12.023

    Article  CAS  Google Scholar 

  13. BoodaghiMalidarre, R., Khabaz, R., Benam, M.R., Zanganeh, V.: A feasibility study to reduce the contamination of photoneutrons and photons in organs/tissues during radiotherapy. Iran. J. Med. Phys. 17, 366–373 (2019). https://doi.org/10.22038/ijmp.2019.40879.1579

    Article  Google Scholar 

  14. BoodaghiMalidarre, R., Akkurt, I., Kavas, T.: Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for alumino-boro-silicate glasses. Rad. Phys. Chem. 186, 109540 (2021)

    Article  CAS  Google Scholar 

  15. Miri-Hakimabad, H., Panjeh, H., Vejdani-Noghreiyan, A.: Shielding studies on a total-body neutron activation facility. Iran. J. Radiat. Res. 5, 45–51 (2007)

    Google Scholar 

  16. BoodaghiMalidarre, R., Akkurt, I.: Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J. Mater. Sci.: Mater Electron. 32, 11666–11682 (2021)

    CAS  Google Scholar 

  17. Şakar E, Fırat Özpolat Ö, Alım B, Sayyed MI, Kurudirek M, Phy-X/PSD: development of user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Ra. Phys. Chem. 166, 108496 (2020).

  18. Kulali, F.: Simulation studies on the radiological parameters of marble concrete, Emerg. Mater. Res 9–4, 1341–1347 (2020). https://doi.org/10.1680/jemmr.20.00307

    Article  Google Scholar 

  19. Al-Obaid S, Investigation of the neutron shielding properties from 252Cf source, Ph. D. thesis, Suleyman Demirel University, Isparta – 2019

  20. Briesmeister J, 2000. MCNP — a general Monte Carlo code for neutron and photon transport, National Laboratory, Los Alamos, Report LA13709-M, version 4C

  21. Shultis JK, Faw RE, Radiation shielding and radiological protection. 3, 1–28 (2021).

  22. Boodaghi Malidarre R, Akkurt I, A Monte Carlo study on attenuation characteristics of colemanite and barite containing resources irradiated by 252Cf source against neutron-gamma photon, Polym. Bull. 3 (2021)

  23. Boodaghi Malidarre, R., Kulali, F., Inal, A., Oz, A.: Monte Carlo simulation of the waste soda-lime-silica glass system contained Sb2O3 for gamma-ray shielding. Emerg. Mater. Res. 9, 1334–1340 (2020). https://doi.org/10.1680/jemmr.20.00202

    Article  Google Scholar 

  24. Hanfi MY, Sayyed MI, Lacomme EK, Mahmoud KA, Akkurt I, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. (2020) https://doi.org/10.1016/j.net.2020.12.012

  25. Kavaz, E., Tekin, H.O., Agard, O., Altunsoy, E.E., Kilicoglu, O., Kamislioglu, M., Abuzaid, M.M., Sayyed, M.I.: The mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. 45, 15348–15357 (2019)

    Article  CAS  Google Scholar 

  26. Akkurt I, Malidarre RB, Kartal I, Gunoglu K, Monte Carlo simulations study on gamma-ray–neutron shielding characteristics for vinyl ester composites, Polym. Composites. 42(9), 4764–4774. https://doi.org/10.1002/pc.26185.

  27. Akkurt I, Malidarre RB, Kavas T, Monte Carlo simulation of radiation shielding properties of the glass system containing Bi2O3, Eur. Phys. J. Plus 136(3), 1–10 (2021).

  28. Akkurt, I., Malidarre, R.B.: Physical, structural, and mechanical properties of the concrete by FLUKA code and Phy-X/PSD software. Rad. Phys. Chem. 193, 109958 (2022)

    Article  CAS  Google Scholar 

  29. Rammah, Y.S., Kumar, A., Mahmoud, K.A., El-Mallawany, R., El-Agawany, F.I., Susoy, G., Tekin, H.O.: SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications. Emerg. Mater. Res. 9–3, 1000–1008 (2020). https://doi.org/10.1680/jemmr.20.0015

    Article  Google Scholar 

  30. Akkurt I, Malidarreh PB, Malidarre RB, Simulation, and prediction the attenuation behavior of the KNN-LMN based lead-free ceramics by FLUKA code and artificial neural network (ANN)-based algorithm, Environ. Technol. 1–15 (2021).

  31. Hamad RM, Mhareb MHA, Alajerami YS, Sayyed MI, Gameel Saleh, M. Kh Hamad, KhA. Ziq, A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5, alloys with various iron concentrations, J. Alloys. Compd. 858, 157636 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Boodaghi Malidarre.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malidarre, R.B., Akkurt, I. A comprehensive study on the charged-uncharged particle shielding features of (70 − x) CRT–30K2O–xBaO glass system. J Aust Ceram Soc 58, 841–850 (2022). https://doi.org/10.1007/s41779-022-00733-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00733-2

Keywords

Navigation