Skip to main content

Advertisement

Log in

Spatial and Temporal Distribution of Black Carbon in Peru from the Analysis of Biomass Burning Sources and the Use of Numerical Models

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The spatial and temporal distribution of biomass burning in Peru and neighboring countries was analyzed during the 2018–2020 period, with emphasis on 2019. To determine the glaciers most affected by BC as a consequence of vegetation burning, simulations were carried out with the WRF-CHEM model, and to diagnose the origin of BC particles received by the Huaytapallana glacier, backward trajectories were built with the HYSPLIT model. It was found that, during the studied period, the burning of biomass emitted large amounts of BC into the atmosphere, while the number of fires in Peru began its most notable increase in the month of July, with maxima between August and September. Comparisons of the number of outbreaks with the Aerosol Optical Depth (AOD) measured at the Huancayo observatory showed a significant correlation. The Ucayali region is the one that contributes the greatest number of outbreaks and the greatest emissions are produced in the south of Loreto. The WRF model showed that the concentrations in July are still low in relation to the August–October period. The mountain ranges that received the greatest impact from BC emissions were Huaytapallana, Huagoruncho, and Vilcabamba. BC transport is mainly oriented from north to south, moving the particles from the areas of greatest burning to the glaciers located in the center and south of the country. BC concentrations over the Cordillera Blanca were lower. The diagnosis of the backward trajectories corroborated the results of WRF-CHEM and showed trajectories mostly from the north.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

Download references

Funding

This study was supported by Instituno Nacional de Investigaciones de glaciares y ecosistemas de Monataña.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo S. Moya-Álvarez.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya-Álvarez, A.S., Estevan, R., Martínez-Castro, D. et al. Spatial and Temporal Distribution of Black Carbon in Peru from the Analysis of Biomass Burning Sources and the Use of Numerical Models. Earth Syst Environ 7, 411–430 (2023). https://doi.org/10.1007/s41748-023-00342-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-023-00342-4

Keywords

Navigation