Skip to main content

Advertisement

Log in

Climate Change Impacts on the South American Monsoon System and Its Surface–Atmosphere Processes Through RegCM4 CORDEX-CORE Projections

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

This study evaluates projected changes in surface water and energy balances and surface–atmosphere coupling in the South American Monsoon System (SAMS) for the end of the century (2080–2099). The analyses are based on two ensemble datasets, which follow Representative Concentration Pathway 8.5 in the future period, and cover four subdomains (Northern and Southern—NAMZ and SAMZ—Amazon, La Plata Basin—LPB, and Southern Southeast Brazil—SSB). One ensemble consists of three Global Climate Models (HadGEM2-ES, MPI-ESM-MR and NorESM1-M), while the other consists of their dynamically downscaled version at 25 km horizontal grid spacing using Regional Climate Model version 4 (RegCM4). As both ensembles are able in reproducing the annual cycle of the components of the surface water and energy balances in the present climate, they can be used in the study of future climate. During the wet season (November–March), both ensembles project a decrease in precipitation over NAMZ and SAMZ (an exception is RegCM4 that projects a slight increase in SAMZ), and an increase across the LPB and SSB. These changes do not cause retreat or expansion of the monsoon area over the continent, which is similar to the present climate (1995–2014). For the wet season, the ensembles are in line with the presence of a strong surface–atmosphere coupling in LPB and SSB, weak coupling in SAMZ and very weak coupling in NAMZ. For future climate, the coupling is even weaker in NAMZ, which may be a driver for the negative changes in precipitation. For the other subdomains, while the ensembles project similar signals of precipitation changes, they disagree with the surface-atmosphere coupling highlighting the uncertainties in future climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Algarra I, Eiras-Barca J, Nieto R, Gimeno L (2019) Global climatology of nocturnal low-level jets and associated moisture sources and sinks. Atmos Res 229:39–59. https://doi.org/10.1016/j.atmosres.2019.06.016

    Article  Google Scholar 

  • Almazroui M, Ashfaq M, Islam MN et al (2021) Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Syst Environ 5:155–183. https://doi.org/10.1007/s41748-021-00233-6

    Article  Google Scholar 

  • Ambrizzi T, Reboita MS, da Rocha RP, Llopart M (2019) The state of the art and fundamental aspects of regional climate modeling in South America. Ann N Y Acad Sci 1436:98–120

    Article  Google Scholar 

  • Andrelina B, Reboita MS (2021) Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul. Anuário Do Instituto De Geociências 44:1–26. https://doi.org/10.11137/1982-3908_2021_44_39515

    Article  Google Scholar 

  • Arraut JM, Satyamurty P (2009) Precipitation and water vapor transport in the Southern Hemisphere with emphasis on the South American region. J Appl Meteorol Climatol 48(9):1902–1912

  • Ashfaq M, Cavazos T, Reboita MC, Torres-Alavez JA, Im ES, Olusegun CF, Alves L, Kesondra K, Adeniyi MO, Moustapha T, Syla MB, Mehmood S, Zafar Q, Das S, Diallo I, Coppola E, Filippo G (2020) Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations. Clim Dyn. https://doi.org/10.1007/s00382-020-05306-2

    Article  Google Scholar 

  • Asnani GC (1993) Tropical meteorology, vol 2. Nobel Printers, Pashan

    Google Scholar 

  • Baker JCA, de Souza DC, Kubota PY, Buermann W, Coelho CAS, Andrews MB, Gloor M, Garcia-Carreras L, Figueroa SN, Spracklen DV (2021) An assessment of land-atmosphere interactions over South America using satellites, reanalysis, and two global climate models. Am Meteorol Soc 22(4):905–922. https://doi.org/10.1175/JHM-D-20-0132.1

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevag A, Seland O, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2013) The Norwegian Earth System Model, NorESM1-M—part 1: description and basic evaluation of the physical climate. Geosci Model Dev. https://doi.org/10.5194/gmd-6-687-2013

  • Betts AK (2004) Understanding hydrometeorology using global models. Bull Am Meteorol Soc 85:1673–1688. https://doi.org/10.1175/BAMS-85-11-1673

    Article  Google Scholar 

  • Blázquez J, Silvina AS (2020) Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Clim Dyn 55:2089–2106. https://doi.org/10.1007/s00382-020-05370-8

    Article  Google Scholar 

  • Bombardi RJ, Carvalho LMV (2009) IPCC global coupled model simulations of the South America monsoon system. Clim Dyn 33:893–916

    Article  Google Scholar 

  • Bonan G (2016) Ecological climatology: concepts and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Brêda JPL, de Paiva RCD, Collischon W et al (2020) Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim Change 159:503–522

    Article  Google Scholar 

  • Brubaker KL, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Clim 6:1077–1089

    Article  Google Scholar 

  • Bruno RD, da Rocha HR, Freiras HC et al (2006) Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrol Process 20:2477–2489. https://doi.org/10.1002/hyp.6211

    Article  Google Scholar 

  • Carvalho LMV, Cavalcanti IFA (2016) The South American monsoon system (SAMS). In: Carvalho LMW, Jones C (eds) The monsoons and climate change. Springer Climate, Sydney, pp 121–148

    Chapter  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the south Atlantic convergence zone. J Clim 15:2377–2394

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108

    Article  Google Scholar 

  • Chao WC (2012) Correction of excessive precipitation over steep and high mountains in a GCM. J Atmos Sci 69:1547–1561

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C et al (2014) Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am J Clim Change 3:512–527. https://doi.org/10.4236/ajcc.2014.35043

    Article  Google Scholar 

  • Christoffersen BO, Restrepo-Coupe N, Arain MA, Baker IT, Cestaro BP, Ciais P, Fisher JB, Galbraith D, Guan X, Gulden L, van den Hurk B, Ichii K, Imbuzeiro H, Jain A, Levine N, Miguez-Macho G, Poulter B, Roberti DR, Sakaguchi K, Sahoo A, Schaefer K, Shi M, Verbeeck H, Yang ZL, Araújo AC, Kruijt B, Manzi AO, da Rocha HR, von Randow C, Muza MN, Borak J, Costa MH, de Gonçalves LGG, Zeng X, Saleska SR (2014) Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agric for Meteorol 191:33–50. https://doi.org/10.1016/j.agrformet.2014.02.008

    Article  Google Scholar 

  • Collini EA, Berbery EH, Barros VR, Pyle ME (2008) How does soil moisture influence the early stages of the South American monsoon? J Clim 21(2):195–213

    Article  Google Scholar 

  • Correa I, Arias PA, Rojas M (2020) Evaluation of multiple indices of the South American monsoon. Int J Climatol. https://doi.org/10.1002/joc.6880

    Article  Google Scholar 

  • Costa MH, Biajoli MC, Sanches L et al (2010) Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: are the wet and seasonally dry rain forests any different? J Geophys Res Biogeosci 115:1–9. https://doi.org/10.1029/2009JG001179

    Article  Google Scholar 

  • Cunningham CAC, Cavalcanti IFA (2006) Intraseasonal modes of variability affecting the South Atlantic Convergence Zone. Int J Climatol 26:1165–1180

    Article  Google Scholar 

  • da Rocha HR, Goulden ML, Miller SD, Menton MC, Oliveira PLDV, de Freitas AM, Figueira S (2004) Seasonality of water and heat fluxes over a tropical Forest in eastern Amazônia. Ecol Appl 14:22–32

    Article  Google Scholar 

  • da Rocha H, Manzi A, Cabral O, Miller S, Gouldel M, Saleska S, Coupe N, Wofsy S, Borma L, Artaxo P, Vourlitis G, Nogueira J, Cardoso F, Nobre A, Kruijt B, Freitas H, von Randow C, Aguiar R, Maia J (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J Geophys. https://doi.org/10.1029/2007JG000640

    Article  Google Scholar 

  • da Rocha RP, Cuadra SV, Reboita MS, Kruger LF, Ambrizzi T, Krusche N (2012) Effects of RegCM3 parameterizations on simulated rainy season over South America. Climate Res 52:253–265

    Article  Google Scholar 

  • Dirmeyer PA (2011) The terrestrial segment of soil moisture climate coupling. Geophys Res Lett 38:1–5. https://doi.org/10.1029/2011GL048268

    Article  Google Scholar 

  • Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Trends in land-atmosphere interactions from CMIP5 simulations. J Hydrometeorol. https://doi.org/10.1175/JHM-D-12-0107.1

    Article  Google Scholar 

  • Dirmeyer PA, Wang Z, Mbuh MJ, Norton HE (2014) Intensified land surface control on boundary layer growth in a changing climate. Geophys Res Lett 41:1290–1294. https://doi.org/10.1002/2013GL058826

    Article  Google Scholar 

  • Drumond A, Nieto R, Gimeno L, Ambrizzi T (2008) A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J Geophys Res Atmos 113:D14128. https://doi.org/10.1029/2007JD009547

  • Durán-Quesada AM, Reboita MS, Gimeno L (2012) Precipitation in tropical America and the associated sources of moisture: a short review. Hydrol Sci J 57:1–13

    Article  Google Scholar 

  • Elguindi N, Giorgi F, Turuncoglu UU (2014) Assessment of CMIP5 global model simulations over the sub-set of CORDEX domains used in the Phase I CREMA Experiment. Clim Change 125:7–21

    Article  Google Scholar 

  • Eltahir EAB (1998) A soil moisture rainfall feedback mechanism. Water Resour Res 34:765–776

    Article  Google Scholar 

  • Erfanian A, Wang G (2018) Explicitly accounting for the role of remote oceans in regional climate modeling of South America. J Adv Model Earth Syst 10(10):2408–2426

    Article  Google Scholar 

  • Ferreira SJF, Luizão FJ, Ross SM, Biot Y, Mello-Ivo WMP (2004) Soil water storage in an upland Forest after selective logging in central amazonia. Rev Bras Ciênc Solo 28:59–66

    Article  Google Scholar 

  • Ferreira MJ, de Oliveira AP, Soares J (2011) Anthropogenic heat in the city of São Paulo, Brazil. Theor Appl Climatol 104:43–56. https://doi.org/10.1007/s00704-010-0322-7

    Article  Google Scholar 

  • Ferreira Junior P, Sousa A, Vitorino M, de Souza E, Souza P (2013) Estimate of evapotranspiration in eastern Amazonia using SEBAL. Amazon J Agric Environ Sci 56:33–39. https://doi.org/10.4322/rca.2013.001

    Article  Google Scholar 

  • Flato G et al (2013) Evaluation of climate models. Climate change 2013: the physical science basis, Cambridge

  • Fu R, Li W (2004) The influence of the land surface on the transition from dry to wet season in Amazonia. Theor Appl Climatol 78:97–110

    Article  Google Scholar 

  • Gan MA, Kousky V, Roupelewski CF (2004) The South America monsoon rainfall over West-Central Brazil. J Clim 17:47–66

    Article  Google Scholar 

  • Geen R, Bordoni S, Battisti D, Hui K (2020) The dynamics of the global monsoon: connecting 2 theory and observations. Earth Space Sci Open Arch (ESSOAr) 1:1–50

    Google Scholar 

  • Gettelman A, Sherwood SC (2016) Processes responsible for cloud feedback. Curr Clim Change Rep 2(4):179–189

    Article  Google Scholar 

  • Giles JÁ, Ruscica RC, Menéndez CG (2019) The diurnal cycle of precipitation over South America represented by five gridded datasets. Int J Climatol 40(2):668–686

    Article  Google Scholar 

  • Giorgetta M, Jungclaus J, Reick C et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F et al (2012) Model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Giorgi F, Coppola E, Teichmann C, Jacob D (2021) Editorial for the CORDEX-CORE experiment I special issue. Clim Dyn 57:1265–1268. https://doi.org/10.1007/s00382-021-05902-w

    Article  Google Scholar 

  • Gomes WB, Correia FWS, Capistrano VB, Veiga JAP, Vergasta LA, Chou SC, Lyra AA, Nobre P, Rocha VM (2020) Water budget changes in the Amazon basin under RCP 8.5 and deforestation scenarios. Clim Res 80:105–120. https://doi.org/10.3354/cr01597

    Article  Google Scholar 

  • Grimm AM (2004) How do La Niña events disturb the summer monsoon system in Brazil? Clim Dyn 22:123–138

    Article  Google Scholar 

  • Grimm AM, Dominguez F, Cavalcanti IFA, Cavazos T, Gan MA, Silva Dias PL, Fu R, Castro C, Hu H, Barreiro M (2020) South and North American monsoons: characteristics, life cycle, variability, modelling and prediction. In: Chang CP, Ha K-J, Johnson RH, Kim F, Lau GNC, Wang B (eds) The multi-scale global monsoon system, World Scientific Series on Asia-Pacific Weather and Climate, vol 11, p 500, Chapter 5, pp 49–66. World Scientific Publishing Company, Singapore (ISBN: 978-981-121-659-6)

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP Coordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095

    Article  Google Scholar 

  • Halder S, Dirmeyer PA, Marx L, Kinter JL (2018) Impact of land surface initialization and land-atmosphere coupling on the prediction of the Indian Summer Monsoon with the CFSv2. Front Environ Sci 5:92. https://doi.org/10.3389/fenvs.2017.00092

    Article  Google Scholar 

  • Hartmann DL (2016) Global physical climatology (Second Edition). Washington

  • Hastenrath S (1991) Climate dynamics of tropics. Kluwer, Dordrecht

    Book  Google Scholar 

  • He C, Wu B, Zou L, Zhou T (2017) Responses of the summertime subtropical anticyclones to global warming. J Clim 30:6465–6479

    Article  Google Scholar 

  • Herbash H, Dee D (2016) ERA5 reanalysis is in production. ECMWF Newsletter No. 147, p 7

  • Hodnett MG, da Silva LP, da Rocha HR, Sennad RC (1995) Seasonal soil water storage changes beneath central Amazonian rainforest and pasture. J Hydrol 170:233–254

    Article  Google Scholar 

  • Houze RA Jr, Rasmussen KL, Zuluaga MD, Brodzik SR (2015) The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the Tropical Rainfall Measuring Mission (TRMM) satellite. Rev Geophys 53:994–1021. https://doi.org/10.1002/2015RG000488

    Article  Google Scholar 

  • Hsu P-G, Li T, Murakami H, Kitoh A (2013) Future change of the global monsoon revealed from 19 CMIP5 models. J Geophys Res Atmos 118:1247–1260

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  • Kitoh A, Endo H, Kumar KK et al (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118:3053–3065

    Article  Google Scholar 

  • Kousky VE (1988) Pentad outgoing longwave radiation climatology for the South American sector. Rev Brasil Meteorol 3:217–231

    Google Scholar 

  • Krüger LF, da Rocha RP, Reboita MS, Ambrizzi T (2012) RegCM3 nested in HadAM3 scenarios A2 and B2: projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim Change 113:599–621

    Article  Google Scholar 

  • Li H, Robock A, Suxia L, Mo X, Viterbo P (2005) Evaluation of reanalysis soil simulations using updated chinese soil moisture observations. J Hydrometeorol 6:180–193

    Article  Google Scholar 

  • Li W, Fu R, Dickinson RE (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006355

    Article  Google Scholar 

  • Lima KC, Satyamurty P, Fernández JPR (2010) Large-scale atmospheric conditions associated with heavy rainfall episodes in southeast Brazil. Theoret Appl Climatol 101:121–135

    Article  Google Scholar 

  • Liu Z, Notaro M, Kutzbach J, Liu N (2006) Assessing global vegetation–climate feedbacks from observations. J Clim 19:787–814

    Article  Google Scholar 

  • Llopart M, Coppola E, Giorgi F et al (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125:11–125

    Article  Google Scholar 

  • Llopart M, da Rocha RP, Reboita MS, Cuadra S (2017) Sensitivity of simulated South America climate to the land surface schemes in RegCM4. Clim Dyn 48:1–12

    Google Scholar 

  • Llopart M, Reboita MS, Coppola E et al (2018) Land use change over the Amazon forest and its impact on the local climate. Water 10:1–12

    Article  Google Scholar 

  • Llopart M, Reboita MS, da Rocha RP (2020a) Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim Dyn 54:99–116. https://doi.org/10.1007/s00382-019-04990-z

    Article  Google Scholar 

  • Llopart M, Domingues LM, Torma C et al (2020b) Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains. Clim Dyn. https://doi.org/10.1007/s00382-020-05539-1

    Article  Google Scholar 

  • Lyra AA, Chou SC, Sampaio GO (2016) Sensitivity of the Amazon biome to high resolution climate change projections. Acta Amazon 46:175–188. https://doi.org/10.1590/1809-4392201502225

    Article  Google Scholar 

  • Ma HY, Mechoso CR, Xue Y et al (2011) Impact of land surface processes on the South American warm season climate. Clim Dyn 37:187–203. https://doi.org/10.1007/s00382-010-0813-3

    Article  Google Scholar 

  • Maeda EE, Ma X, Wagner F et al (2017) Evapotranspiration seasonality across the Amazon basin. Earth Syst Dyn 8:439. https://doi.org/10.5194/esd-8-439-2017

    Article  Google Scholar 

  • Marengo JA (2005) Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget. Clim Dyn 24:11–22

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Kousky V et al (2001) On the onset and end of the rainy season in the Brazilian Amazon basin. J Clim 14:833–852

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM et al (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21

    Article  Google Scholar 

  • Meehl GA, Bony S (2011) Introduction to CMIP5. Clivar Exch 16:4–5

    Google Scholar 

  • Menéndez CG, Zaninelli PG, Carril AF, Sánchez E (2016) Hydrological cycle, temperature, and land surface–atmosphere interaction in the La Plata Basin during summer: response to climate change. Clim Res 68:231–241. https://doi.org/10.3354/cr01373

    Article  Google Scholar 

  • Menéndez CG, Giles J, Ruscica R, Zaninelli P, Coronato T, Falco M, Sörensson A, Fita L, Carril A, Li L (2019) Temperature variability and soil-atmosphere interaction in South America simulated by two regional climate models. Clim Dyn 53(5–6):2919–2930. https://doi.org/10.1007/s00382-019-04668-6

    Article  Google Scholar 

  • Mintz Y, Serafini YV (1992) A global climatology of soil moisture and water balance. Clim Dyn 8:13–27

    Article  Google Scholar 

  • Moreira AA, Ruhoffa AL, Roberti DR et al (2019) Assessment of terrestrial water balance using remote sensing data in South America. J Hydrol 575:131–147

    Article  Google Scholar 

  • Nascimento MG, Herdies DL, de Souza DO (2016) The South American water balance: the influence of low-level jets. J Clim 29:1429–1449

    Article  Google Scholar 

  • Negrón-Juaréz RI, Hodnett MG, Fu R, Gouden ML, von Randow C (2007) Control of dry season evapotranspiration over the Amazonian forest as inferred from observation at a Southern Amazon forest site. J Clim 20:2827–2839. https://doi.org/10.1175/JCLI4184.1

    Article  Google Scholar 

  • Negrón-Juárez R et al (2020) Calibration, measurement, and characterization of soil moisture dynamics in a central Amazonian tropical forest. Vadose Zone J 19(1). https://doi.org/10.1002/vzj2.20070

  • Nepstad DC, Carvalho CJRD, Davidson EA et al (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  Google Scholar 

  • Oliveira AP, Machado AJ, Escobedo JF, Soares J (2002) Diurnal evolution of solar radiation at the surface in the city of São Paulo: seasonal variation and modeling. Theor Appl Climatol 71:231–249

    Article  Google Scholar 

  • Pascale S, Carvalho LMV, Adams DK et al (2019) Current and Future Variations of the Monsoons of the Americas in a Warming Climate. Curr Clim Change Rep 5:125–144

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

    Book  Google Scholar 

  • Pessacg NL, Solman AS, Samuelsson P et al (2014) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB Project. Clim Dyn 43:1221–1239

    Article  Google Scholar 

  • Ramage CS (1971) Monsoon Meteorology. Academic Press, New York

    Google Scholar 

  • Reboita MS, Gan MA, da Rocha RP, Ambrizzi T (2010) Regimes de precipitação na América do Sul: uma revisão bibliográfica. Rev Brasil Meteorol 25:185–204

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Dias CG, Ynoue RY (2014) Climate projections for South America: RegCM43 driven by HadCM3 and ECHAM5. Adv Meteorol 2014:1–17

    Article  Google Scholar 

  • Reboita MS, Marietto DMG, Souza A, Barbosa M (2017) Caracterização Atmosférica quando da ocorrência de eventos extremos de chuva na região Sul de Minas Gerais. Rev Brasil Climatol 21:20–37

    Google Scholar 

  • Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol 38:2866–2879

    Article  Google Scholar 

  • Reboita MS, Ambrizzi T, Silva BA, Pinheiro RF, da Rocha RP (2019) The South Atlantic subtropical anticyclone: present and future climate. Front Earth Sci 7:8. https://doi.org/10.3389/feart.2019.00008

    Article  Google Scholar 

  • Reboita MS, Reale M, da Rocha RP et al (2020) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn. https://doi.org/10.1007/s00382-020-05317-z

    Article  Google Scholar 

  • Reboita MS, Kuki CAC, Marrafon VH et al (2021) South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Clim Dyn. https://doi.org/10.1007/s00382-021-05918-2

    Article  Google Scholar 

  • Ruscica RC, Sörensson AA, Menéndez CG (2014) Pathways between soil moisture and precipitation in southeastern South America. Atmos Sci Lett. https://doi.org/10.1002/asl2.552

    Article  Google Scholar 

  • Ruscica RC, Sörensson AA, Menéndez CG (2015) Pathways between soil moisture and precipitation in southeastern South America. Atmos Sci Lett 16:267–272. https://doi.org/10.1002/asl2.552

    Article  Google Scholar 

  • Ruscica RC, Menédez CG, Sörensson AA (2016) Land surface–atmosphere interaction in future South American climate using a multi-model ensemble. Atmos Sci Lett 17:141–147

    Article  Google Scholar 

  • Saleska SR, Didan K, Huete A, da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318:612

    Article  Google Scholar 

  • Salio P, Hobouchian MP, Skabar YG, Vila D (2015) Evaluation of high-resolution satellite precipitation estimates over Southern South America using a dense rain gauge network. Atmos Res 163:146–161. https://doi.org/10.1016/j.atmosres.2014.11.017

    Article  Google Scholar 

  • Sánchez E, Solman S, Remedio ARC et al (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twenty-first century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193–2212

    Article  Google Scholar 

  • Santana JR, Yamasoe MA, Sena ET, Rosário NE (2020) Cloud climatology from visual observations at São Paulo, Brazil. Int J Clim 40(1):207–219

  • Santanello JA, Peters-Lidard CD, Kumar SV (2011) Diagnosing the sensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction. J Hydrometeorol 12:766–785. https://doi.org/10.1175/JHM-D-10-05014.1

    Article  Google Scholar 

  • Satyamurty P, da Costa CPW, Manzi AO (2013) Moisture source for the Amazon Basin: a study of contrasting years. Theoret Appl Climatol 111(1–2):195–209

    Article  Google Scholar 

  • Saulo C, Seluchi ME, Nicolini, M (2002) Low level circulation associated with a Northwestern Argentina Low event. In: VAMOS/CLIVAR/WCRP conference on South American low-level jet. Santa Cruz de la Sierra, Bolivia, 5–7 February

  • Seluchi ME, Chou ESC (2009) Synoptic patterns associated with landslide events in the Serra do Mar, Brazil. Theoret Appl Climatol 98:67–77

    Article  Google Scholar 

  • Seluchi ME, Saulo AC (2012) The Northewestern Argentinean low and the Chaco low: their characteristics, differences and similarities. Rev Bras Meteorol 27(1):49–60

    Article  Google Scholar 

  • Sena ACT, Magnusdottir G (2020) Projected end-of-century changes in the South American Monsoon in the CESM Large Ensemble. J Clim 33:7859–7874. https://doi.org/10.1175/JCLI-D-19-0645.1

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. https://doi.org/10.1038/nature05095

    Article  Google Scholar 

  • Seneviratne SI, Darvin EL, Hirschi M et al (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American Monsoon. Clim Change 98(3):331–357

    Article  Google Scholar 

  • Shao Y, Henderson-Sellers A (1996) Modeling soil moisture: a Project for intercomparison of land surface parameterization schemes phase 2(b). J Geophys Res Atmos 101(D3):7227–7250. https://doi.org/10.1029/95JD03275

    Article  Google Scholar 

  • Silva JP, Reboita MS, Escobar GCJ (2019) Caracterização da Zona de Convergência do Atlântico Sul em campos atmosféricos. Rev Brasil Climatol 25:355–377

    Google Scholar 

  • Sörensson AA, Ruscica RC (2018) Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America. Water Resour Res 54(4):2891–2908. https://doi.org/10.1002/2017WR021682

    Article  Google Scholar 

  • Sörensson AA, Menéndez CG, Samuelsson P et al (2010) Soil-precipitation feedback during the South American Monsoon as simulated by a regional climate model. Clim Change 98:429–447

    Article  Google Scholar 

  • Spennemann PC, Saulo AC (2015) An estimation of the land-atmosphere coupling strength in South America using the Global Land Data Assimilation System. Int J Climatol 35:4151–4166. https://doi.org/10.1002/joc.4274

    Article  Google Scholar 

  • Spennemann PC, Salvia M, Ruscica RC, Sörensson AA, Grings F, Karszenbaum H (2018) Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models. Int J Appl Earth Obs Geoinf 64:96–103. https://doi.org/10.1016/j.jag.2017.08.016

    Article  Google Scholar 

  • Teodoro TA, Reboita MS (2019) Análise climatológica da variabilidade espaço-temporal da umidade do solo sobre a América do Sul. In: VIII Simpósio Internacional de Climatologia. Simpósio Internacional de Climatologia, Belém. http://www.sic2019.com.br/. Accessed 02 Dec 2020

  • Tian B, Dong X (2020) The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys Res Lett. https://doi.org/10.1029/2020GL087232

    Article  Google Scholar 

  • Vera C, Higgins W, Ambrizzi T et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000

    Article  Google Scholar 

  • von Randow C et al (2004) Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor Appl Climatol 78:5–26. https://doi.org/10.1007/s00704-004-0041-z

    Article  Google Scholar 

  • Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183

    Article  Google Scholar 

  • Wang B, Liu J, Kim HJ et al (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135

    Article  Google Scholar 

  • Wang B, Jin C, Liu J (2020) Understanding future change of global monsoons projected by CMIP6 models. J Clim 33:6471–6488. https://doi.org/10.1175/JCLI-D-19-0993.1

    Article  Google Scholar 

  • Wei J, Dirmeyer PA (2012) Dissecting soil moisture-precipitation coupling. Geophys Res Lett. https://doi.org/10.1029/2012GL053038

    Article  Google Scholar 

  • Werth D, Avissar R (2004) The regional evapotranspiration of the Amazon. J Hydrometeorol 5:100–109

    Article  Google Scholar 

  • Wilks D (2019) Statistical methods in the atmospheric sciences, 4th edn. Elsevier, Department of Earth and Atmospheric Sciences, Cornell University, USA

  • Zanin PR, Satyamurty P (2020) Hydrological processes interconnecting the two largest watersheds of South America from multi-decadal to inter-annual time scales: a critical review. Int J Clim 40(9):4006–4038

    Article  Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the working groups of CMIP5, ICTP, and GPCP for producing and making their data available. The present study was carried out with support from the Higher Education Personnel Improvement Coordination—Brazil (CAPES)—Financing Code 001 and National Council for Scientific and Technological Development (CNPq). M. A. was supported by the National Climate‐Computing Research Center, which is located within the National Center for Computational Sciences at the ORNL and supported under a Strategic Partnership Project, 2316‐T849‐08, between DOE and NOAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Simões Reboita.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teodoro, T.A., Reboita, M.S., Llopart, M. et al. Climate Change Impacts on the South American Monsoon System and Its Surface–Atmosphere Processes Through RegCM4 CORDEX-CORE Projections. Earth Syst Environ 5, 825–847 (2021). https://doi.org/10.1007/s41748-021-00265-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-021-00265-y

Keywords

Navigation