Skip to main content

Advertisement

Log in

Farmers’ adoption of organic production

  • Article
  • Published:
Asia-Pacific Journal of Regional Science Aims and scope Submit manuscript

Abstract

This paper presents a theoretical model of the farmer’s decision to adopt alternative technologies in agriculture. The decision concerns the allocation of lands for old and new technology. We consider the case where organic production requires adoption of a new/alternative technology to be profitable. This paper suggests that an entirely theoretical exercise can illuminate parts of this complex issue which empirical work has not been able to reach. We show the importance of (1) the available quantity of land devoted to agriculture, (2) the productivity of the new/alternative technology, (3) the incentive mechanism and finally, (4) the constraints on output of the new/alternative technology. The results of this article are not confined to the agricultural sector. The insights apply to other technology decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For instance, in Langyintuo and Mungoma (2008), there is a significant and negative relationship between land size and adoption while Kebede et al. (1990) show that land size has a positive effect on adoption of new technology.

  2. We designate the organic good as the one which requires new technology for its production.

  3. We think of countries, such as India, Sri Lanka, or Vietnam where the unemployment rate is high in rural areas. From World Bank (2013), the average household in rural areas contains 2.2 employed members and 1.7 individuals that are unemployed.

  4. This policy was followed by the Vietnamese government at the dawn of Renovation (“\({Doi\; Moi}\)”) policy, in the second half of the 1980s.

References

  • Abebe GK, Bijman J, Pascucci S, Omta O (2013) Adoption of improved potato varieties in Ethiopia: the role of agricultural knowledge and innovation system and smallholder farmers’ quality assessment. Agric Syst 122:22–32

    Article  Google Scholar 

  • Adebayo SA, Oladele OI (2013) Vegetable farmers’ attitude towards organic agriculture practices in South Western Nigeria. J Food Agric Environ 11:548–552

    Google Scholar 

  • Adesina AA, Mbila D, Nkamleu GB, Endamana D (2000) Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of Southwest Cameroon. Agric Ecosyst Environ 80:255–265

    Article  Google Scholar 

  • Akinola AA, Alene AD, Adeyemo R, Sanogo D, Olanrewaju AS, Nwoke C, Nziguheba G (2010) Determinants of adoption and intensity of use of balance nutrient management systems technologies in the northern Guinea savanna of Nigeria. Q J Int Agric 49:25–45

    Google Scholar 

  • Ayuk ET (1997) Adoption of agroforestry technology: the case of live hedges in the Central Plateau of Burkina Faso. Agric Syst 54:189–206

    Article  Google Scholar 

  • Feder G, Just RE, Zilberman D (1985) Adoption of agricultural innovations in developing countries: a survey. Econ Dev Cult Chang 33:255–298

    Article  Google Scholar 

  • Flaten O, Lien G, Koesling M, Løes A-K (2010) Norwegian farmers ceasing certified organic production: characteristics and reasons. J Environ Manag 91:2717–2726

    Article  Google Scholar 

  • Huang J, Rozelle S (1996) Technological change: rediscovering the engine of productivity growth in China’s rural economy. J Dev Econ 49:337–369

    Article  Google Scholar 

  • Just RE, Zilberman D (1983) Stochastic structure, farm size and technology adoption in developing agriculture. Oxf Econ Pap 35:307–328

    Article  Google Scholar 

  • Kebede Y, Gunjal K, Coffin G (1990) Adoption of new technologies in Ethiopian agriculture: the case of Tegulet–Bulga district Shoa province. Agric Econ 4:27–43

    Article  Google Scholar 

  • Langyintuo AS, Mungoma C (2008) The effect of household wealth on the adoption of improved maize varieties in Zambia. Food Policy 33:550–559

    Article  Google Scholar 

  • Läpple D, Kelley H (2015) Spatial dependence in the adoption of organic drystock farming in Ireland. Eur Rev Agric Econ 42:315–337

    Article  Google Scholar 

  • Läpple D, Van Rensburg T (2011) Adoption of organic farming: are there differences between early and late adoption? Ecol Econ 70:1406–1414

    Article  Google Scholar 

  • Lohr L, Salomonsson L (2000) Conversion subsidies for organic production: results from Sweden and lessons for the United States. Agric Econ 22:133–146

    Article  Google Scholar 

  • Ojiako IA, Manyong VM, Ikpi AE (2007) Determinants of rural farmers’ improved soybean adoption decisions in northern Nigeria. J Food Agric Environ 5:215–223

    Google Scholar 

  • Ouma JO, De Groote H (2011) Determinants of improved maize seed and fertilizer adoption in Kenya. J Dev Agric Econ 3:529–536

    Google Scholar 

  • Pietola KS, Lansink AO (2001) Farmer response to policies promoting organic farming technologies in Finland. Eur Rev Agric Econ 28:1–15

    Article  Google Scholar 

  • Rauniyar GP, Goode FM (1992) Technology adoption on small farms. World Dev 20:275–282

    Article  Google Scholar 

  • Stiglitz JE (1987) Some theoretical aspects of agricultural policies. World Bank Res Obs 2:43–60

    Article  Google Scholar 

  • Strauss J, Barbosa M, Teixeira S, Thomas D, Gomes Junior R (1991) Role of education and extension in the adoption of technology: a study of upland rice and soybean farmers in Central-West Brazil. Agric Econ 5:341–359

    Article  Google Scholar 

  • Uematsu H, Mishra AK (2012) Organic farmers or conventional farmers: where’s the money? Ecol Econ 78:55–62

    Article  Google Scholar 

  • World Bank (2013) World development report 2013: jobs. World Bank, Washington, DC

    Book  Google Scholar 

Download references

Acknowledgements

Cuong Le Van is partially funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 502.01-2017.12. Nguyen To The is partially funded by NAFOSTED under Grant number 502.01-2018.13. The authors acknowledge John Gallup for thoughtful remarks which help us for revising this version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen To The.

Appendix

Appendix

1.1 Appendix 1: Proof of Lemma 2.5

Proof

(i) is obvious.

(ii) Take \(x_0 >0\). We have for \(x>0\), \(\Phi (x) \leqslant \Phi (x_0) +\Phi ^\prime (x_0) (x-x_0)\) since \(\Phi\) is concave. Hence \({{x^{{1}\over {\alpha }}}\over {\Phi (x)}}\geqslant {{x^{{1}\over {\alpha }}}\over {\Phi (x_0) +\Phi ^\prime (x_0) (x-x_0)}} \rightarrow +\infty\) when \(x\rightarrow +\infty\).

We have \({{R}\over {\Phi (A)}}= P_2 ^{\frac{1}{\alpha }} \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }}{{A^{{1}\over {\alpha }}}\over {\Phi (A)}} - \; P_1^{\frac{1}{\alpha }} \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} {{1}\over {\Phi (A)}}\).

The first term of the RHS converges to \(+\infty\) while the second term converges to a finite value since \({{1}\over {\Phi (A)}}\rightarrow {{1}\over {\Phi (+\infty )}}<+\infty\), the conclusion follows. \(\square\)

1.2 Appendix 2: Proof of Proposition 2.1

Proof

Result (i) is easy to prove.

To prove result (ii), since the land constraint is binding, profit becomes

$$\begin{aligned} \pi = \{P_1 S_1^\alpha L_1^{1-\alpha } - wL_1 - C(S_1) + P_2 A {{(V-S_1)}}^\alpha L_2^{1-\alpha } -wL_2 - \Phi (A) C(V-S_1)\}. \end{aligned}$$
  • Consider the case \(\gamma \Phi (A) V-R > 0\) and \(\gamma V+ R>0\). We claim that in this case the solution is interior. Suppose our claim is true. The FOC are as follows:

    $$\begin{aligned}\frac{\partial \pi }{\partial S_1}&= P_1 \alpha S_1^{\alpha -1} L_1^{1-\alpha } - C^\prime (S_1) - P_2 A \alpha (V-S_1)^{\alpha -1} L_2^{1-\alpha } \\ &\quad +\, \Phi (A) C^\prime (V-S_1) =0 \end{aligned}$$
    (5)
    $$\begin{aligned}\frac{\partial \pi }{\partial L_1}= P_1 (1-\alpha )S_1^\alpha L_1^{-\alpha } - w=0 \end{aligned}$$
    (6)

    and

    $$\begin{aligned} \frac{\partial \pi }{\partial L_2}={{ P_2 A }}(1-\alpha )(V-S_1)^\alpha L_2^{-\alpha } - w=0. \end{aligned}$$
    (7)

    From (6) and (7), it can be written as

    $$\begin{aligned}\left( \frac{L_1}{S_1} \right) ^{1-\alpha } = \left[ \frac{P_1 (1-\alpha )}{w}\right] ^{\frac{1-\alpha }{\alpha }}, \end{aligned}$$
    (8)
    $$\begin{aligned}\left( \frac{L_2}{V-S_1} \right) ^{1-\alpha } = \left[ \frac{P_2 A (1-\alpha )}{w}\right] ^{\frac{1-\alpha }{\alpha }}. \end{aligned}$$
    (9)

    Equation (5) is also written as

    $$\begin{aligned} P_1 \alpha \left( \frac{L_1}{S_1} \right) ^{1-\alpha } -P_2 A \alpha \left( \frac{L_2}{V-S_1} \right) ^{1-\alpha } = \gamma S_1 - \gamma \Phi (A) (V-S_1) \end{aligned}$$
    (10)

    where we use \(C(S)= \gamma \frac{S^2}{2}\). Substituting (8), (9) in to (10) yields

    $$\begin{aligned} \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} \left[ P_1 ^{\frac{1}{\alpha }}- (P_2 A)^{\frac{1}{\alpha }}\right] +\gamma \Phi (A) V = \gamma [1+\Phi (A) ]S_1. \end{aligned}$$

    Recall that

    $$\begin{aligned}R= -\alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} \left[ P_1 ^{\frac{1}{\alpha }}- (P_2 A)^{\frac{1}{\alpha }}\right] . \end{aligned}$$

    Then the FOC for the optimal \(S_1\) is \(\gamma \Phi (A) V-R=\gamma [1+\Phi (A) ]S_1.\) We then get

    $$\begin{aligned} S^{*}_{1} = \frac{\gamma \Phi (A)V - R}{\gamma (1+\Phi (A))}. \end{aligned}$$
    (11)

    The binding land constraint implies

    $$\begin{aligned} S^{*}_{2} =V-S^* _1= \frac{\gamma V + R}{\gamma (1+\Phi (A))}. \end{aligned}$$
    (12)

    From (8), (9) we obtain

    $$\begin{aligned} L^{*}_{1} = \left[ \frac{\gamma \Phi (A)V - R}{\gamma (1+\Phi (A))}\right] \left\{ \frac{P_1(1-\alpha )}{w}\right\} ^{\frac{1}{\alpha }} \end{aligned}$$
    (13)

    and

    $$\begin{aligned} L^{*}_{2} = \left[ \frac{\gamma V + R}{\gamma (1+\Phi (A))}\right] \left\{ \frac{P_2A(1-\alpha )}{w}\right\} ^{\frac{1}{\alpha }}. \end{aligned}$$
    (14)

    We have proved that our claim is true.

  • Consider the case \(\gamma \Phi (A) V-R\leqslant 0\). We claim that \(S^* _1 =0\). From the proof given above \(S^* _1 =0\) or \(S^* _1=V\). Let \(\pi ^0\) and \(\pi ^V\) denote respectively the profits corresponding to \(S^* _1= 0\) and \(S^* _1= V\). In the first case we have \(S^* _2 = V\), \(L^* _1 = 0, L^* _2 = V \left[ \frac{P_2 A (1-\alpha )}{w} \right] ^{\frac{1}{\alpha }}\) while in the second case \(S^* _2 = 0\), \(L^*_ 2 = 0, L^*_1 = V \left[ \frac{P_1 (1-\alpha )}{w} \right] ^{\frac{1}{\alpha }}\). Recall that \(R= \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} \left[ (P_2 A)^{\frac{1}{\alpha } }- P_1 ^{\frac{1}{\alpha } } \right]\).

    Let \(\Delta = \pi ^0 -\pi ^V\). Tedious computations give

    $$\begin{aligned} \Delta=\, & {} P_2 A V^\alpha \left[ \frac{P_2 A (1-\alpha )}{w} \right] ^{\frac{1-\alpha }{\alpha }} V^{1-\alpha } - w \left[ \frac{P_2 A (1-\alpha )}{w} \right] ^{\frac{1}{\alpha } }V -\frac{\Phi (A) \gamma V^2}{2} \\ &-\, P_1 V^\alpha \left[ \frac{P_1 (1-\alpha )}{w} \right] ^{\frac{1-\alpha }{\alpha }} V^{1-\alpha } + w \left[ \frac{P_1 (1-\alpha )}{w} \right] ^{\frac{1}{\alpha } }V +\frac{ \gamma V^2}{2}\\=\, & {} V w {\frac{\alpha -1}{\alpha }} (1-\alpha ) ^{\frac{1 }{\alpha }} (\frac{\alpha }{1-\alpha } )\left[ (P_2 A)^{\frac{1 }{\alpha }} -P_1 ^{\frac{1 }{\alpha }}\right] + \frac{V}{2} (V\gamma +R)\\ &-\,\frac{V}{2}(\gamma \Phi (A)V-R)\\=\, & {} V \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} \left[ (P_2 A)^{\frac{1 }{\alpha }} -P_1 ^{\frac{1 }{\alpha }}\right] + \frac{V}{2} (V \gamma - \Phi (A) \gamma V) \\=\, & {} {{RV+ \frac{V}{2}(V \gamma - \Phi (A)\gamma V) }}\\= & {} {{\frac{V}{2} (V \gamma + R)- \frac{V}{2}(\Phi (A) \gamma V-R)}}. \end{aligned}$$

    If \(\gamma \phi (A)V-R\leqslant 0\) then \(R>0\) and \(V\gamma +R >0\). This implies \(\Delta >0\). Hence \(S^* _1=0\) which implies

    $$\begin{aligned} S^{*}_{2}=V,\quad L^{*}_{1}=0,\quad L^{*}_{2} = V \left\{ \frac{P_2 A (1-\alpha )}{w}\right\} ^{\frac{1}{\alpha }}. \end{aligned}$$
  • Consider the case \(\gamma V+ R\leqslant 0\). We then have \(R<0\). This implies \(\Delta <0\). Hence \(S^{*}_1=V\) and

    $$\begin{aligned} S^{*}_{2}=0,\quad L^{*}_{2 }=0,\quad L^{*}_{1} = V \left\{ \frac{P_1 (1-\alpha )}{w}\right\} ^{\frac{1}{\alpha }}. \end{aligned}$$

\(\square\)

1.3 Appendix 3: Proof of Proposition 2.2

Proof

When \(\frac{R}{\gamma \Phi (A) }< V < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\) or \(-\frac{R}{\gamma }<V < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\) from Proposition 2.1, we have

$$\begin{aligned} S^{*}_{2} = \frac{\gamma V + R}{\gamma (1+\Phi (A))},\quad R= \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} \left[ (P_2 A)^{\frac{1}{\alpha } }- P_1 ^{\frac{1}{\alpha } } \right] . \end{aligned}$$

We can write \(S^{*}_{2} = \frac{V(1 + \frac{R}{\gamma V})}{1+\Phi (A)}\).

Consider first the case \(\frac{R}{\gamma \Phi (A) }< V < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\).

We observe that \(\frac{R}{\gamma V} - \Phi (A) < 0\). We obtain

$$\begin{aligned} \text{Log} S^{*}_{2}=\, & {} \text{Log} V + \text{Log} \left( 1+\frac{R}{\gamma V}\right) - \text{Log} (1+\Phi (A))\\ \frac{\mathrm{d}}{{\mathrm{d}}A} \text{Log} S^{*}_{2}=\, & {} \frac{1}{(1 + \frac{R}{\gamma V})} \frac{1}{\gamma V}\left[ P_2^{{1}\over {\alpha }} \left( \frac{1-\alpha }{w}\right) ^{\frac{(1-\alpha )}{\alpha }} A^{\frac{(1-\alpha )}{\alpha }}\right] - \frac{1}{1+\Phi (A)}\Phi '(A)\\=\, & {} \frac{1}{\gamma V + R} P_2^{{1}\over {\alpha }} \left[ \frac{1-\alpha }{w}\right] ^{\frac{(1-\alpha )}{\alpha }} A^{\frac{(1-\alpha )}{\alpha }} - \frac{\Phi '(A)}{1+\Phi (A)}. \end{aligned}$$

Observe that \(\frac{1}{\gamma V + R}>\frac{1}{\gamma V(1+\Phi (A))}\). Hence,

$$\begin{aligned} \frac{{\mathrm{d}}}{{\mathrm{d}}A} \text{Log} S^{*}_{2}>\frac{1}{1+\Phi (A)}\left[ \frac{1}{\gamma V} P_2^{{1}\over {\alpha }} \left( \frac{1-\alpha }{w}\right) ^{\frac{(1-\alpha )}{\alpha }} A^{\frac{(1-\alpha )}{\alpha }} - {\Phi '(A)}\right] . \end{aligned}$$

Let

$$\begin{aligned} \phi (A) = \frac{1}{\gamma V} P_2^{{1}\over {\alpha }} \left[ \frac{1-\alpha }{w}\right] ^{\frac{(1-\alpha )}{\alpha }} A^{\frac{(1-\alpha )}{\alpha }} - {\Phi '(A)}. \end{aligned}$$

The function \(\phi\) is increasing. It takes a negative value \(-\Phi '(0)\) when \(A=0\) and equals \(+\infty\) when \(A=+\infty\). Hence, there exists a value \(\hat{A}\) such that if \(A>\hat{A}\) then \(\phi (A)>0\) implying \(\frac{{\mathrm{d}}}{{\mathrm{d}}A} \text{Log} S^{*}_{2}>0\).

When \(A\rightarrow 0\), \(\frac{1}{\gamma V + R} P_2^{{1}\over {\alpha }} [\frac{1-\alpha }{w}]^{\frac{(1-\alpha )}{\alpha }} A^{\frac{(1-\alpha )}{\alpha }} - \frac{\Phi '(A)}{1+\Phi (A)}\rightarrow -\Phi '(0)<0.\) Hence, there exists \(\tilde{A}\) such that, if \(A<\tilde{A}\) then \(\frac{{\mathrm{d}}}{{\mathrm{d}}A} \text{Log} S^{*}_{2}<0\). The proof is similar for the case \(-\frac{R}{\gamma }<V < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\). \(\square\)

1.4 Appendix 4: Proof of Lemma 2.6

Proof

  1. (i)

    is obvious.

  2. (ii.a)

    We have \(Q(P_1, P_2, \alpha , w, \Phi , \gamma , A) = V_1 \left[ 1+ {{1}\over {\Phi (A)}}\left( {{A}\over {A_1}}\right) ^{{1}\over {\alpha }}\right] .\)

    Hence,

    $$\begin{aligned} V<Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\Leftrightarrow & {} \left[ {{V}\over {V_1}} -1\right] < {{1}\over {A_1}^{{1}\over {\alpha }}} {{A^{{1}\over {\alpha }}}\over {\Phi (A)}}\\\Leftrightarrow & {} {{A^{{1}\over {\alpha }}}\over {\Phi (A)}} > {A_1}^{{1}\over {\alpha }} \left[ {{V}\over {V_1}} - 1\right] . \end{aligned}$$

    Let \(\phi (A)= {{A^{{1}\over {\alpha }}}\over {\Phi (A)}}.\) Since \(\Phi\) is concave, the function \(\phi\) is increasing. Let \(A_2\) be defined by

    $$\begin{aligned} {{{A_2}^{{1}\over {\alpha }}}\over {\Phi (A_2)}}= A_1^{{1}\over {\alpha }} \left[ {{V}\over {V_1}}-1 \right] . \end{aligned}$$

    Then obviously, \(V\leqslant Q(P_1, P_2, \alpha , w, \Phi , \gamma , A) \Leftrightarrow A \geqslant A_2.\)

    If \({{A_1^{{1}\over {\alpha }}}\over {\Phi (A_1)}} < A_1^{{1}\over {\alpha }} \left[ {{V}\over {V_1}}-1 \right]\) or equivalently \({{1}\over {\Phi (A_1)}}< \left[ {{V}\over {V_1}} -1\right]\) then \(A_2 >A_1\) since function \(\phi\) is increasing. If \({{1}\over {\Phi (A_1)}}= \left[ {{V}\over {V_1}} -1\right]\) then \(A_2 =A_1\) and obviously \({{1}\over {\Phi (A_1)}}> \left[ {{V}\over {V_1}} -1\right]\) then \(A_2 <A_1.\)

  3. (ii.b)

    Let \(\psi (A)= {{A^{{1}\over {\alpha }}-A_1^{{1}\over {\alpha }}}\over {\Phi (A)}} {{1}\over {A_1 ^{{1}\over {\alpha }}}}.\) Function \(\psi\) is increasing since \(\phi\) is increasing. It satisfies \(\psi (0)= -\infty ,\; \psi (A_1)=0\). Therefore, \(A_3 >A_1\) since \(\psi (A_3)= {{V}\over {V_1}}\). Now, observe that

    $$\begin{aligned} {{A_3^{{1}\over {\alpha }}}\over {\Phi (A_3)}}= A_1^{{1}\over {\alpha }} {{V}\over {V_1}}+ {{A_1^{{1}\over {\alpha }}}\over {\Phi (A_3)}} \end{aligned}$$

    while \(A_2\) verifies \({{A_2^{{1}\over {\alpha }}}\over {\Phi (A_2)}}= A_1^{{1}\over {\alpha }} \left[ {{V}\over {V_1}}-1 \right] ,\) hence \(A_3 >A_2\).

    Since \(R= \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} \left[ (P_2 A)^{\frac{1}{\alpha } }- P_1 ^{\frac{1}{\alpha } } \right] ,\) we get \({{R}\over {\gamma \Phi (A)}}= {{1}\over {A_1 ^{{1}\over {\alpha }}}} \left[ {{A ^{{1}\over {\alpha }}-A_1 ^{{1}\over {\alpha }}}\over {\Phi (A)}} \right] V_1.\)

    We have

    $$\begin{aligned} {{{{R}\over {\gamma \Phi (A)}} \leqslant V \Leftrightarrow \psi (A) \leqslant {{V}\over {V_1}}=\psi (A_3) \Leftrightarrow A \leqslant A_3 }} \end{aligned}$$
  4. (ii.c)

    Since \(R= \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} \left[ (P_2 A)^{\frac{1}{\alpha } }- P_1 ^{\frac{1}{\alpha } } \right] ,\) we have \(-{{R}\over {\gamma }} = V_1 \left[ 1-\left( {{A}\over {A_1}}\right) ^{{1}\over {\alpha }} \right] .\) Hence,

    $$\begin{aligned} V+{{R} \over {\gamma }}= & {} V-V_1 \left[ 1-\left( {{A}\over {A_1}}\right) ^{{1}\over {\alpha }} \right] = V-V_1+ V_1 \left( {{A}\over {A_1}}\right) ^{{1}\over {\alpha }}> V-V_1 > 0. \end{aligned}$$

    Thus, \(V+{{R}\over {\gamma }} > 0\), and we find \(V > -{{R}\over {\gamma }}\).

  5. (iii.a)

    Since (ii.3), we have \(-{{R}\over {\gamma }} = V_1 \left[ 1-\left( {{A}\over {A_1}}\right) ^{{1}\over {\alpha }} \right] .\) Hence

    $$\begin{aligned}&V\leqslant -{{R}\over {\gamma }} \Leftrightarrow V\leqslant V_1 \left[ 1-\left( {{A}\over {A_1}}\right) ^{{1}\over {\alpha }} \right] \Leftrightarrow \left( {{A}\over {A_1}}\right) ^{{1}\over {\alpha }} \leqslant \left[ 1-{{V}\over {V_1}} \right] \\ &\quad \Leftrightarrow A \leqslant A_1 \left[ 1-{{V}\over {V_1}} \right] ^\alpha = A_0 \Leftrightarrow A \leqslant A_0. \end{aligned}$$
  6. (iii.b)

    The function \(\psi\) is increasing, satisfies \(\psi (0)= -\infty\) and \(\psi (A_1)=0\). Therefore, \(A_3 >A_1\) since \(\psi (A_3)= {{V}\over {V_1}}\). Since \({{R}\over {\gamma \Phi (A)}} = {{1}\over {A_1 ^{{1}\over {\alpha }}}} \left[ {{A ^{{1}\over {\alpha }}-A_ 1 ^{{1}\over {\alpha }}}\over {\Phi (A)}} \right] V_1,\) we have

    $$\begin{aligned} {{R}\over {\gamma \Phi (A)}} \leqslant V&\Leftrightarrow \psi (A) \leqslant {{V}\over {V_1}}=\psi (A_3) \Leftrightarrow A \leqslant A_3. \end{aligned}$$

\(\square\)

1.5 Appendix 5: Proof of Proposition 2.3

Proof

Consider case (i). We have the following results:

  1. (i.a)

    We have \(A_0 <A_1\), and hence \(A\leqslant A_0 \Rightarrow A<A_1 \Leftrightarrow R<0\) (see (i) of Lemma 2.4). From (iii.a) of Lemma 2.4 we have \(A\leqslant A_0 \Leftrightarrow V\leqslant -{{R}\over {\gamma }}\).

  2. (i.b)

    We have \(A_1 <A_3\) (see (iii.b) of Lemma 2.4). First suppose \(A_0<A<A_1\). We know that \(A<A_1 \Leftrightarrow R<0\) from (i) of Lemma 2.4, and \(A_0 <A \Leftrightarrow V> -{{R}\over {\gamma }}\) from (iii.a) of the same lemma. We have \(-{{R}\over {\gamma }}< V \leqslant V_1 < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A).\) Now suppose \(A_1 \leqslant A <A_3\). If \(A_1 \leqslant A \Leftrightarrow R\geqslant 0\) from (i) of Lemma 2.4 and \(A<A_3 \Leftrightarrow {{R}\over {\gamma \Phi (A)}} <V\). We have \(R\geqslant 0, \; {{R}\over {\gamma \Phi (A)}}<V \leqslant V_1 < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A).\)

  3. (i.c)

    We know that \(A_3 >A_1\) (see (iii.b) of Lemma 2.4). Hence \(A\geqslant A_3 \Rightarrow A>A_1 \Leftrightarrow R>0\). But \(A\geqslant A_3 \Leftrightarrow V\leqslant {{R}\over {\gamma \Phi (A)}}\) (see (ii.b) of Lemma 2.4).

Apply Proposition 2.1 to get the results for each subcase.

We now consider case (ii). We distinguish two cases:

  1. (ii.a)

    \(V \geqslant V_1 \left\{ 1+{{1}\over {\Phi (A_1)}}\right\} \Leftrightarrow A_2 \geqslant A_1\),

  2. (ii.b)

    \(V_1<V < V_1 \left\{ 1+{{1}\over {\Phi (A_1)}}\right\} \Leftrightarrow A_1 > A_2\).

Consider case (ii.a)

(ii.a1) We have \(A\leqslant A_2 \Leftrightarrow V\geqslant Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\).

(ii.a2) If \(A>A_2\) then \(A>A_1 \Rightarrow R>0\). Also

$$\begin{aligned} A>A_2\Leftrightarrow & {} V< Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\\ A<A_3\Leftrightarrow & {} {{R}\over {\gamma \Phi (A)}} <V. \end{aligned}$$

Apply Proposition 2.1 to get the results

  1. (ii.a3)

    If \(A\geqslant A_3\) then \(A>A_1 \Rightarrow R> 0\) and \(V\leqslant {{R}\over {\gamma \Phi (A)}}\) (see (ii.a) of Lemma 2.4). Apply Proposition 2.1. Consider case (ii.b).

    1. (ii.b1)

      We have \(A\leqslant A_2 \Leftrightarrow V\geqslant Q(P_1, P_2, \alpha , w, \Phi , \gamma , A)\). Apply Proposition 2.1.

    2. (ii.b2)

      We first consider the case \(A_2 <A\leqslant A_1\). We have successively

      $$\begin{aligned} A\leqslant A_1\Leftrightarrow & {} R\leqslant 0 \text{(see (i) of Lemma 2.4) }\\ A>A_2\Leftrightarrow & {} V<Q(P_1, P_2, \alpha , w, \Phi , \gamma , A) \text{(see (ii.1) of Lemma 2.4) }\\ V>V_1\Rightarrow & {} V> -{{R}\over {\gamma }} \text{(see (ii.c) of Lemma 2.4) }. \end{aligned}$$

      Hence \(-{{R}\over {\gamma }}<V < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A).\) Apply Proposition 2.1. Now, consider the case \(A_1<A<A_3\). We have successively

      $$\begin{aligned} A> A_1\Leftrightarrow & {} R>0 (\text{see}\ (\text{i})\ \text{of Lemma }2.4)\\ A>A_1\Rightarrow & {} A>A_2 \Leftrightarrow V<Q(P_1, P_2, \alpha , w, \Phi , \gamma , A) (\text{see} (\text{ii.a})\ \text{of Lemma }2.4)\\ A<A_3\Leftrightarrow & {} V> {{R}\over {\gamma \Phi (A)}}(\text{see} (\text{ii.b})\ \text{of Lemma }2.4). \end{aligned}$$

      To sum up \(R>0,\; {{R}\over {\gamma \Phi (A)}}<V < Q(P_1, P_2, \alpha , w, \Phi , \gamma , A).\) Apply Proposition 2.1.

    3. (ii.b3)

      Now assume \(A\geqslant A_3\). If \(A\geqslant A_3\) then \(A>A_1 \Rightarrow R> 0\) and \(V\leqslant {{R}\over {\gamma \Phi (A)}}\) (see (ii.b) of Lemma 2.4). Apply Proposition 2.1.

\(\square\)

1.6 Appendix 6: Proof of Proposition 2.6

Proof

We have \(Y_2^* = {\widehat{Y}}_2 \Leftrightarrow A S_2^{* \alpha } L_2^{* 1-\alpha } = {\widehat{Y}}_2\Leftrightarrow A L_2^{* 1-\alpha } = {\widehat{Y}}_2 S_2^{* -\alpha }.\) Thus \(S^* _2>0, L^* _2>0\). The problem of the producer is

$$\begin{aligned} \max \{P_1 S_1^{\alpha } L_1^{1-\alpha } - wL_1 - C(S_1) + P_2 {\widehat{Y}}_2 - w \left\{ \frac{{\widehat{Y}}_2}{A}\right\} ^{\frac{1}{(1-\alpha )}} S_2^{ -\frac{\alpha }{(1-\alpha )}} - \Phi (A) C(S_2) \end{aligned}$$

using the constraints \(S_1 \geqslant 0, \; S_2 \geqslant 0, \; L_1\geqslant 0, \; S_1 +S_2 \leqslant V.\) As previously, since V is strictly larger than total land of the problem without land constraint, i.e., \(S^* _1 + S^* _2 <V\), we have \(S^* _1< V\) and \(S^* _2<V\). We will prove that \(S^* _1>0\) (and hence \(L^* _1>0\)). Indeed if \(S^* _1=0\) then \(L^* _1=0\) and \(P_1{ S^* _1}^{\alpha } {L^* _1}^{1-\alpha } - wL^* _1 - C(S^* _1)=0\). But we take

$$\begin{aligned} L_1= S_1 \left[ \frac{P_1 (1-\alpha )}{w} \right] ^{\frac{1}{\alpha }},\quad S_1 = \frac{1}{\gamma } P_1 ^{\frac{1}{\alpha }}\alpha \left[ \frac{(1-\alpha )}{w} \right] ^{\frac{1-\alpha }{\alpha }} \end{aligned}$$

then \(P_1 S_1^{\alpha } L_1^{1-\alpha } - wL_1 - C(S_1)= \frac{1}{2 \gamma } P^{\frac{2}{\alpha }}\alpha ^2 w^{\frac{2(\alpha -1)}{\alpha }}(1-\alpha )^{\frac{2(1-\alpha )}{\alpha }}>0\) and that is a contradiction. Hence \(S^* _1>0, L^* _1>0\).

We obtain the following First-Order Conditions (FOC)

$$\begin{aligned} P_1 \alpha \left( \frac{L^{*}_1}{S^{*}_1}\right) ^{1-\alpha } - \gamma S^{*}_1 = 0 \end{aligned}$$
(15)
$$\begin{aligned} P_1 (1-\alpha ) \left( \frac{S^*_1}{L^{*}_1}\right) ^{\alpha } - w = 0 \end{aligned}$$
(16)
$$\begin{aligned} w \left\{ \frac{{\widehat{Y}}_2}{A}\right\} ^{\frac{1}{(1-\alpha )}} \frac{\alpha }{(1-\alpha )} S_2^{ -\frac{1}{(1-\alpha )}} - \Phi (A) \gamma S^{*}_2 = 0 \end{aligned}$$
(17)

From Eq. (16), we have

$$\begin{aligned} \left( \frac{S^{*}_1}{L^{*}_1}\right) ^{\alpha } = \frac{w}{P_1(1-\alpha )} \Leftrightarrow \left( \frac{L^{*}_1}{S^{*}_1}\right) ^{(1-\alpha )} = \left\{ \frac{P_1(1-\alpha )}{w}\right\} ^{\frac{(1-\alpha )}{\alpha }}. \end{aligned}$$
(18)

From Eqs. (15) and (18), we get

$$\begin{aligned} P_1^{\frac{1}{\alpha }} \alpha \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }} = \gamma S^{*}_1. \end{aligned}$$
(19)

From Eq. (17), we obtain

$$\begin{aligned} \frac{\alpha }{(1-\alpha )} w \left\{ \frac{{\widehat{Y}}_2}{A}\right\} ^{\frac{1}{(1-\alpha )}} S_2^{ -\frac{1}{(1-\alpha )}} = \gamma \Phi (A) S^{*}_2. \end{aligned}$$
(20)

From Eqs. (19) and (20), we obtain

$$\begin{aligned} P_1^{\frac{1}{\alpha }} \alpha \left\{ \frac{1-\alpha }{w} \right\} ^{\frac{(1-\alpha )}{\alpha }}= {} \gamma S^{*}_1 \end{aligned}$$
(21)
$$\begin{aligned} \frac{\alpha }{(1-\alpha )} w \left\{ \frac{{\widehat{Y}}_2}{A} \right\} ^{\frac{1}{(1-\alpha )}} S_2^{ -\frac{1}{(1-\alpha )}}= {} \gamma \Phi (A) S^{*}_2. \end{aligned}$$
(22)

From Eqs. (21) and (14), we get

$$\begin{aligned} \frac{\alpha }{\gamma } P_1^{\frac{1}{\alpha }} \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }}= {} S^{*}_1\end{aligned}$$
(23)
$$\begin{aligned} \frac{\alpha }{(1-\alpha )} \frac{ w }{\gamma \Phi (A)} \left\{ \frac{{\widehat{Y}}_2}{A}\right\} ^{\frac{1}{(1-\alpha )}}= {} S_2^{* \frac{(2-\alpha )}{(1-\alpha )}}. \end{aligned}$$
(24)

Summing up:

$$\begin{aligned}&{\textit{land for conventional production}}, S^{*}_{1} = \frac{\alpha }{\gamma } P_1^{\frac{1}{\alpha }} \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(1-\alpha )}{\alpha }},\\ &{\textit{labor for conventional production}}, L^{*}_{1}= \frac{\alpha }{\gamma } P_1^{\frac{2}{\alpha }} \left\{ \frac{1-\alpha }{w}\right\} ^{\frac{(2-\alpha )}{\alpha }},\\ &{\textit{land for organic production}}, S^{*}_{2}= \left\{ \frac{\alpha }{(1-\alpha )} \frac{w}{\gamma \Phi (A)}\right\} ^{\frac{1-\alpha }{(2-\alpha )}} \left\{ \frac{{\widehat{Y}}_2}{A}\right\} ^{\frac{1}{(2-\alpha )}},\\ &{\textit{labor for organic production}}, L^{*}_{2}= \left\{ \frac{\alpha }{(1-\alpha )} \frac{w}{\gamma \Phi (A)}\right\} ^{-\frac{\alpha }{(2-\alpha )}} \left\{ \frac{{\widehat{Y}}_2}{A}\right\} ^{\frac{2}{(2-\alpha )}}. \end{aligned}$$

Observe that actually \(S^{*}_{1} + S^{*}_{2} < V\). Hence, the values \(S^{*}_{1}, \; L^{*}_{1}, \; S^{*}_{2}, \; L^{*}_{2}\) are optimal. \(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Van, C., To The, N. Farmers’ adoption of organic production. Asia-Pac J Reg Sci 3, 33–59 (2019). https://doi.org/10.1007/s41685-018-0082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41685-018-0082-4

Keywords

JEL Classification

Navigation