Skip to main content
Log in

Emergent intelligence technique-based transport depot resource management in a metropolitan area

  • Regular Paper
  • Published:
Journal on Vehicle Routing Algorithms

Abstract

A metropolitan area experiences transport resource scarcities and dynamic resource allocation problems due to huge number of commuters’ population, dynamic commuters’ arrival rates, etc. The progress of these problems results into economic loss, traffic congestion, inefficient utilization of resources and increase in indefinite waiting time of commuters. Hence, we propose a dynamic transport resource allocation scheme. The scheme efficiently manages number of vehicles over time and space using emergent intelligence (EI) technique. Based on the historical information, commuters’ arrival rates, resource availability, deficit resources, surplus resources of neighbor depots, etc., the EI technique with agents is used for collecting, analyzing, sharing and allocating resources, for optimal utilization of resources in a metropolitan area. Analytical model of EI technique-based transport resource allocation scheme is developed using Markov chain, and derived the closed-form expression of optimal utilization of resources. Performance evaluation is carried out with varying number of commuters’ arrival rates, vehicles, requests and number of neighborhood depots. We observe that results obtained in the simulation and analysis reflect the effectiveness of the proposed scheme in a metropolitan area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zhou, Q., Bakshi, A., Prasanna, V., Soma, R.: Towards an integrated modeling and simulation framework for freight transportation in metropolitan areas. In: Information Reuse and Integration, 2008. IRI 2008. IEEE International Conference on, pp. 280–285. IEEE (2008)

  2. Rzevski, G., Skobelev, P.: Emergent intelligence in large scale multi-agent systems. Int. J. Educ. Inf. Technol. 1(2), 64–71 (2007)

    Google Scholar 

  3. Li, Z., Sim, C.H., Low, M.Y.H.: A survey of emergent behavior and its impacts in agent-based systems. In: Industrial Informatics, 2006 IEEE International Conference on, pp. 1295–1300. IEEE (2006)

  4. Angeline, P.J.: Genetic programming and emergent intelligence. Adv. Genet. Program. 1, 75–98 (1994)

    Google Scholar 

  5. Johnson, S.: Emergence: The Connected Lives of Ants, Brains, Cities, and Software. Simon and Schuster, New York (2002)

    Google Scholar 

  6. Hughes, R.E., Powell, W.B.: Mitigating end effects in the dynamic vehicle allocation model. Manag. Sci. 34(7), 859–879 (1988)

    Article  MATH  Google Scholar 

  7. Zong, F., Hongfei, J., Xiang, P., Yang, W.: Prediction of commuter’s daily time allocation. PROMET-Traffic Transp. 25(5), 445–455 (2013)

    Article  Google Scholar 

  8. Ceder, A.A.: Public-transport vehicle scheduling with multi vehicle type. Transp. Res. Part C Emerg. Technol. 19(3), 485–497 (2011)

    Article  Google Scholar 

  9. Powell, W.B.: A stochastic model of the dynamic vehicle allocation problem. Transp. Sci. 20(2), 117–129 (1986)

    Article  Google Scholar 

  10. Mannering, F., Kim, S.-G., Barfield, W., Ng, L.: Statistical analysis of commuters’ route, mode, and departure time flexibility. Transp. Res. Part C Emerg. Technol. 2(1), 35–47 (1994)

    Article  Google Scholar 

  11. Powell, W.B.: An operational planning model for the dynamic vehicle allocation problem with uncertain demands. Transp. Res. Part B Methodol. 21(3), 217–232 (1987)

    Article  Google Scholar 

  12. Arkian, H.R., Atani, R.E., Pourkhalili, A., Kamali, S.: Cluster-based traffic information generalization in vehicular ad-hoc networks. Veh. Commun. 1(4), 197–207 (2014)

    Google Scholar 

  13. Hillis, W.D.: Intelligence as an emergent behavior; or, the songs of eden. Daedalus 175–189 (1988)

  14. Briante, O., Campolo, C., Iera, A., Molinaro, A., Paratore, S.Y., Ruggeri, G.: Supporting augmented floating car data through smartphone-based crowd-sensing. Veh. Commun. 1(4), 181–196 (2014)

    Google Scholar 

  15. De Wolf, T.: Analyzing and engineering self-organizing emergent applications. Thesis, pp. 1–220 (2007)

  16. Roman, N.A.N., Nikolaev, V., Strelchonok, V.F.: Model of vehicle allocation problem with uncertain demands. Transp. Telecommun. 4, 119–124 (2004)

    Google Scholar 

  17. http://www.mobilec.org/overview.php. A multi-agent platform for mobile C/C++ agents. Accessed May 2014

  18. Sharma, D., Tran, D.: Dynamic scheduling using multiagent architecture. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 476–482. Springer, Berlin (2004)

    Chapter  Google Scholar 

  19. Fackler, P.L.: Solving Non-Linear Rational Expectations Models. Working Paper (2005)

  20. Chavhan, S., Venkataram, P.: Emergent intelligence based QoS routing in MANET. Proc. Comput. Sci. 52, 659–664 (2015)

    Article  Google Scholar 

  21. Daszczuk, W.B., Choromański, W., Mieścicki, J., Grabski, W.: Empty vehicles management as a method for reducing passenger waiting time in personal rapid transit networks. IET Intell. Transp. Syst. 9(3), 231–239 (2014)

    Article  Google Scholar 

  22. Bădică, C., Budimac, Z., Burkhard, H.-D., Ivanovic, M.: Software agents: languages, tools, platforms. Comput. Sci. Inf. Syst. 8(2), 255–298 (2011)

    Article  Google Scholar 

  23. Chen, B., Cheng, H.H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11(2), 485–497 (2010)

    Article  Google Scholar 

  24. http://www.techferry.com/articles/swarm-intelligence.html. Swarm Intelligence. Accessed June 2016

  25. Rajabi, M., Aris, T.N.M.: The role of multi-agent in computational problem solving environments. In: The 4th International Conference on Electrical Engineering and Informatics, Procedia Technology, pp. 1103–1109 (2013)

    Article  Google Scholar 

  26. Thompson, L.L.: Information exchange in negotiation. J. Exp. Soc. Psychol. 27(2), 161–79 (1991)

    Article  Google Scholar 

  27. Booth, C., Richardson, T.: Placing the public in integrated transport planning. Transp. Policy 8(2), 141–149 (2001)

    Article  Google Scholar 

  28. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that buy and sell. Commun. ACM 42(3), 81–82 (1999)

    Article  Google Scholar 

  29. Suresh, C., Venkataram, P.: Commuters traffic pattern and prediction analysis in a metropolitan area. J. Veh. Routing Algorithms 1, 1–14 (2017)

    Google Scholar 

  30. Ren, W., Wu, J., Zhang, X., Lai, R., Chen, L.: A stochastic model of cascading failure dynamics in communication networks. IEEE Trans. Circuits Syst. II Express Briefs 65(5), 632–636 (2018)

    Article  Google Scholar 

  31. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains: With a Chapter of Markov Random Fields by David Griffeath, vol. 40. Springer, Berlin (2012)

    Google Scholar 

  32. Snell, J.L.: Finite Markov chains and their applications. Am. Math. Mon. 66(2), 99–104 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  33. Faizrahnemoon, M.: Real-data modeling of transportation networks. Dissertation, National University of Ireland Maynooth (2016)

  34. Chen, C., Liu, W., Lin, C.H., Chen, Q.: A Markov chain model for predicting transient particle transport in enclosed environments. Build. Environ. 90, 30–36 (2015)

    Article  Google Scholar 

  35. Kuai, K.Z., Tsai, C.W.: Discrete-time Markov chain model for transport of mixed-size sediment particles under unsteady flow conditions. J. Hydrol. Eng. 21(11), 04016039 (2016)

    Article  Google Scholar 

  36. A multi-agent platform for mobile C/C++ agents. http://www.mobilec.org/overview.php. Accessed on June 2015

  37. Realistic road network creation is accessed from http://www.openstreetmap.org on 2016 January

  38. Real time traffic flow data is accessed from http://pems.dot.ca.gov/ on 2016 January

  39. Petrosky-Nadeau, N., Zhang, L.: Solving the DMP Model Accurately. No. w19208. National Bureau of Economic Research (2013)

  40. Miranda, M.J., Fackler, P.L.: Applied Computational Economics and Finance. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Chavhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavhan, S., Venkataram, P. Emergent intelligence technique-based transport depot resource management in a metropolitan area. J Veh Routing Algorithms 2, 23–40 (2019). https://doi.org/10.1007/s41604-019-00012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41604-019-00012-7

Keywords

Navigation