Skip to main content
Log in

Synergistic use of Sentinel-1 and Sentinel-2 for improved LULC mapping with special reference to bad land class: a case study for Yamuna River floodplain, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

High accuracy land use/land cover (LULC) mapping of Yamuna Chambal ravines for reclamation and conservation of these degraded/badlands is indispensable. Integration of freely available SAR datasets along with medium to high resolution optical data is one of the best approach for high accuracy LULC mapping. The objective of the presented study is to evaluate the fusion technique for Sentinel-1 SAR data and Sentinel-2 optical data for high accuracy LULC mapping in order to assess the area occupied by these negative landforms i.e., ravines. The VH-polarization fused image with Sentinel-2 optical data gives the best accuracy of 85% followed by VV-polarization fused image with same datasets of 84% accuracy whereas Sentinel-1 and Sentinel-2 provides the accuracy of 60 and 80%, respectively. The prepared LULC maps shown that bad land (Ravine class) occupied an area in the range of 600–700 km2 using combinations of different datasets as the wastelands in the area required immediate reclamation and conservation measures to be adopted. However, asymptotic performance of fusion technique for SAR and optical data further elucidate its successful implementation and dominancy over other datasets for improved LULC mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chatterjee, R. S., Saha, S. K., Kumar, S., Mathew, S., Lakhera, R. C., Dadhwal, V. K., et al. (2009). Interferometric SAR for characterization of ravines as a function of their density, depth, and surface cover. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 472–481.

    Article  Google Scholar 

  2. Marzolff, I., & Pani, P. (2018). Dynamics and patterns of land levelling for agricultural reclamation of erosional badlands in Chambal Valley (Madhya Pradesh, India). Earth Surface Processes and Landforms, 43(2), 524–542.

    Article  Google Scholar 

  3. Zinck, J. A., Lopez, J., Metternicht, G. I., Shresthaa, D. P., Vázquez-Selem, L. L., et al. (2001). Mapping and modelling mass movements and gullies in mountainous areas using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 3(1), 43–53.

    Article  Google Scholar 

  4. Kala, S., Meena, H. R., Rashmi, I., Prabavathi, M., Singh, A. K., Singh, R. K., et al. (2017). Status of medicinal plants diversity and distribution at rehabilitated Yamuna and Chambal ravine land ecosystems in India. International Journal of Current Microbiology and Applied Sciences, 6(3), 618–630.

    Article  Google Scholar 

  5. Mohapatra, S. N., Rompaey, A. V., Pani, P., Poesen, J., Ranga, V., et al. (2016). Detection and analysis of badlands dynamics in the Chambal River Valley (India), during the last 40 (1971–2010) years. Environmental Earth Sciences, 75(3), 183.

    Article  Google Scholar 

  6. Bali, J. S., Kamphrost, A., Miejerink, A. M. J., & Hilwig, F. W. (1969). Methods and the legend for the use of aerial photographs in the survey, stabilization and reclamation of ravines. New Delhi: Central Ravine Reclamation Board, Ministry of Agriculture and Co-operation.

    Google Scholar 

  7. Reiche, J., Verbesselt, J., Hoekman, D., Herold, M., et al. (2015). Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sensing of Environment, 156, 276–293.

    Article  Google Scholar 

  8. Haas, J., & Ban, Y. (2017). Sentinel-1A SAR and Sentinel-2A MSI data fusion for urban ecosystem service mapping. Remote Sensing Applications: Society and Environment, 8(1), 41–53.

    Article  Google Scholar 

  9. Steinhausen, M. J., Wagner, P. D., Narasimhan, B., Waske, B., et al. (2018). Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International Journal of Applied Earth Observation and Geoinformation, 73(April), 595–604.

    Article  Google Scholar 

  10. Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S., Teodoro, A. C., et al. (2019). Integration of Sentinel-1 and Sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors, 19(5), 1140.

    Article  Google Scholar 

  11. Khan, A., Rao, L. A. K., Yunus, A. P., & Govil, H. (2018). Characterization of channel planform features and sinuosity indices in parts of Yamuna River flood plain using remote sensing and GIS techniques. Arabian Journal of Geosciences, 11(17), 525.

    Article  Google Scholar 

  12. Ali, P. Y., Jie, D., Khan, A., Sravanthi, N., Rao, L. A. K., Hao, C., et al. (2019). Channel migration characteristics of the Yamuna River from 1954 to 2015 in the vicinity of Agra, India: A case study using remote sensing and GIS. International Journal of River Basin Management, 17(3), 1–9.

    Article  Google Scholar 

  13. Kaplan, G., & Avdan, U. (2018). Sentinel-1 and Sentinel-2 data fusion for wetlands mapping: Balikdami, Turkey. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, 42(3), 729–734.

    Article  Google Scholar 

  14. Ban, Y., Webber, L., Gamba, P., & Paganini, M., et al. (2017). EO4Urban: Sentinel-1A SAR and Sentinel-2A MSI data for global urban services. In 2017 Joint urban remote sensing event (JURSE) (Vol. 1, No. 3, pp. 1–3).

  15. Hong, G., Zhang, A., Zhou, F., Brisco, B., et al. (2014). Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area. International Journal of Applied Earth Observation and Geoinformation, 28(1), 12–19.

    Article  Google Scholar 

  16. Amarsaikhana, D., Blotevogel, H. H., Van-Genderenc, J. L., Ganzorig, M., Gantuya, R., & Nergui, B. (2010). Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification. International Journal of Image and Data Fusion, 1(1), 83–97.

    Article  Google Scholar 

  17. Clerici, N., Calderón, C. A. V., Posada, J. M., et al. (2017). Fusion of Sentinel-1a and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. Journal of Maps, 13(2), 718–726.

    Article  Google Scholar 

  18. Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., Santos, G. G., Fernandes, R., et al. (2012). Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing and Environment, 120, 91–101.

    Article  Google Scholar 

  19. Sprohnle, K., Fuchs, E. M., & Pelizari, P. A. (2017). Object-based analysis and fusion of optical and SAR satellite data for dwelling detection in refugee camps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 1780–1791.

    Article  Google Scholar 

  20. Gibril, M. B. A., Bakar, S. A., Yao, K., Idrees, M. O., & Pradhan, B. (2017). Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area. Geocarto International, 32(7), 735–748.

    Article  Google Scholar 

  21. Sanli, F. B., Abdikan, S., Esetlili, M. T., & Sunar, F. (2017). Evaluation of image fusion methods using PALSAR, RADARSAT-1 and SPOT images for land use/land cover classification. Journal of the Indian Society of Remote Sensing, 45(4), 591–601.

    Article  Google Scholar 

  22. Klonus, S., & Ehlers, M. (2008). Image fusion using the Ehlers spectral characteristics preservation algorithm. GIScience & Remote Sensing, 44(2), 93–116.

    Article  Google Scholar 

  23. Ehlers, M. (2004). Spectral characteristics preserving image fusion based on Fourier domain filtering. In Remote sensing for environment monitoring, GIS applications and geology IV (Vol. 5574, No. 1).

  24. Dimov, D., Kuhn, J., Conrad, C., et al. (2016). Assessment of cropping system diversity in the Fergana valley through image fusion of Landsat 8 and Sentinel-1. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3(July), 173–180.

    Article  Google Scholar 

  25. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., et al. (2006). World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.

    Article  Google Scholar 

  26. Pal, S. K., Majumdar, T. J., & Bhattacharya, A. K. (2007). ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 281–297.

    Article  Google Scholar 

  27. Ehlers, M., Klonus, S., Åstrand, P. J., & Rosso, P. (2010). Multi-sensor image fusion for pansharpening in remote sensing. International Journal of Image and Data Fusion, 1(1), 25–45.

    Article  Google Scholar 

  28. Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). Washington, DC: US Government Printing Office.

    Google Scholar 

  29. Grouven, U., Bender, R., Ziegler, A., & Lange, S. (2007). The kappa coefficient. Deutsche Medizinische Wochenschrift, 132(Suppl), 1–4.

    Google Scholar 

  30. Reddy, G. P. O., Kumar, N., & Singh, S. K. (2018). Remote sensing and GIS in mapping and monitoring of land degradation. Geospatial Technologies in Land Resources Mapping, Monitoring and Management, 21, 401–424.

    Article  Google Scholar 

  31. Soria-Ruiz, J., Fernandez-Ordoñez, Y., & Woodhouse, I. H. (2010). Land-cover classification using radar and optical images: a case study in Central Mexico. International Journal of Remote Sensing, 31(12), 3291–3305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armugha Khan.

Ethics declarations

Conflict of interest

On behalf of all the authors, I confirmed that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Govil, H., Kumar, G. et al. Synergistic use of Sentinel-1 and Sentinel-2 for improved LULC mapping with special reference to bad land class: a case study for Yamuna River floodplain, India. Spat. Inf. Res. 28, 669–681 (2020). https://doi.org/10.1007/s41324-020-00325-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-020-00325-x

Keywords

Navigation