Skip to main content
Log in

Information value based landslide susceptibility zonation of Dharamshala region, northwestern Himalaya, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study investigates the application of statistical information value method (In V) for landslide susceptibility zonation of Dharamshala region, Kangra valley of Himachal Pradesh, India. The study area witnesses a number of landslides due to the prevailing factors such as slope angle, aspect, lithology, soil type, land use pattern, drainage density, and fault density. A landslide inventory map was prepared for the study area to understand the spatial distribution of landslides and their correlation with the prevailing causal factors. The mapped landslides covered an area of approximately 1.1 km2 (landslide training data 0.66 km2 and testing data 0.44 km2) out of the total study area (39.3 km2). Degree of correlation of the causal factors with the mapped landslides was inferred using the bivariate statistical information value (In V) method. The results show that, VHS zone has 0.65 km2 landslide affected area whereas, the HS zone has 0.01 km2 landslide affected area which means that the complete landslide training data (0.66 km2) falls in the HS and VHS zones. The performance of the landslide susceptibility zonation map for predicting the future landslide events was inferred based on the prediction rate curve which gave 0.96 area under curve value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: ASTER GDEM

Fig. 2

Source: Mahajan and Virdi [45]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anbalagan, R., Kumar, R., Lakshmanan, K., Parida, S., & Neethu, S. (2015). Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2(1), 1–17. https://doi.org/10.1186/s40677-014-0009-y.

    Article  Google Scholar 

  2. Cruden, D. M. (1991). A simple definition of a landslide. Bulletin International Association for Engineering Geology, 43, 27–29.

    Article  Google Scholar 

  3. Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice, Paris UNESCO.

  4. Naidu, S., Sajinkumar, K. S., Oommen, T., Anuja, V. J., Samuel, R. A., & Muraleedharan, C. (2017). Early warning system for shallow landslide using rainfall threshold and slope stability analysis. Geoscience Frontiers, 9(6), 1871–1882.

    Article  Google Scholar 

  5. Sarkar, S., Roy, A. K., & Martha, T. R. (2013). Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas. Journal Geological Society of India, 82, 351–362. https://doi.org/10.1007/s12594-013-0162-z.

    Article  Google Scholar 

  6. Anabalgan, R., Chakraborty, D., & Kohli, A. (2008). Landslide hazard zonation mapping on meso scale for systematic planning in mountainous terrain. Journal of Scientific & Industrial Research, 67, 486–497.

    Google Scholar 

  7. Sarkar, S., & Kanungo, D. P. (2004). An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering and Remote Sensing, 70, 617–625.

    Article  Google Scholar 

  8. Rai, P. K., Mohan, K., & Kumra, V. K. (2014). Landslide hazard and its mapping using remote sensing and GIS. Journal of Scientific Research, 58, 1–13.

    Google Scholar 

  9. Cardinali, M., Galli, M., Guzzetti, F., Ardizzone, F., Reichenbach, P., & Bartoccini, P. (2006). Rainfall induced landslide in December 2004 in south-western Umbria, Italy: Types, extent, damage and risk assessment. Natural Hazard and Earth System Science, 6, 237–260.

    Article  Google Scholar 

  10. Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard and vulnerability assessment: An overview. Engineering Geology, 102, 3–4.

    Google Scholar 

  11. Aleotti, P., & Chowdhary, R. (1999). Landslide hazard assessment: Summary, review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 21–44.

    Article  Google Scholar 

  12. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3), 99–111. https://doi.org/10.1016/j.enggeo.2008.03.014.

    Article  Google Scholar 

  13. Fell, R., & D Hartford. (1997). Landslide risk assessment. In: D. Cruden., & R, Fell (Ed.), Paper read at landslide risk assessment, Proceedings of the international workshop on landslide risk assessment.

  14. Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS-based landslide hazard zonation in a part of the Himalayas. International Journal of Remote Sensing, 23(2), 357–369.

    Article  Google Scholar 

  15. Yin, K. L., & Yan, T. Z. (1988). Statistical prediction model for slope instability of metamorphosed rocks. In C. Bonnard (Ed.), Proceeding of the 5th international symposium on landslides, Lausanne Balkema, Rotterdam, vol. 2 (pp. 1269–1272).

  16. Van Westen, C. J. (1994). GIS in landslide hazard zonation: A review with examples from the Colombian Andes. In M. F. Price & D. I. Heywood (Eds.), Mountain environments and geographic information systems (pp. 135–165). London: Taylor and Francis.

    Google Scholar 

  17. Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility mapping using GIS based weighted linear combination, the case in Tsugawa area of Agano river, Niigata Perfecture, Japan. Landslides, 1, 73–81.

    Article  Google Scholar 

  18. Kumar, K. V., Nair, R. R., & Lakhera, R. C. (1993). Digital image enhancement for delineating active landslide areas. Asia-Pacific Remote Sensing Journal, 6(1), 63–66.

    Google Scholar 

  19. Anabalgan, R., & Singh, B. (1996). Landslide hazard and risk assessment mapping of mountainous terrains—A case study from Kumaun Himalaya, India. Engineering Geology, 43, 237–246.

    Article  Google Scholar 

  20. Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology, 42, 213–238.

    Article  Google Scholar 

  21. Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS based statistical landslide zonation with a case study in the Himalaya. Landslides, 2, 61–69.

    Article  Google Scholar 

  22. Mathew, J., Jha, V. K., & Rawat, G. S. (2007). Weight of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Science, 92(5), 628–638.

    Google Scholar 

  23. Singh, T. N., Gulati, A., Dontha, I. K., & Bhardwaj, V. (2008). Evaluating cut slope failure by numerical analysis—A case study. Natural Hazards, 47, 263–279.

    Article  Google Scholar 

  24. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.

    Article  Google Scholar 

  25. Rozos, D., Bathrellos, G. D., & Skilodimou, H. D. (2011). Comparison of the implementation of rock engineering system and analytical hierarchy process methods, based on landslide susceptibility maps, compiled in GIS environment. A case study from eastern Achaia county of Peloponnesus, Greece. Environment Earth Science, 63(1), 49–63.

    Article  Google Scholar 

  26. Ghosh, S., Carranza, E. J. M., Van Westen, C. J., Jetten, V., & Bhattacharya, D. N. (2011). Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalaya (India). Geomorphology, 131, 35–56.

    Article  Google Scholar 

  27. Rawat, M. S., Uniyal, D. P., Dhobal, R., Joshi, B., Rawat, B. S., Bartwal, A., et al. (2015). Study of landslide hazard zonation in Mandakini valley, Rudraprayag district, Uttarakhand, using remote sensing and GIS. Current Science, 109(1), 158–170.

    Google Scholar 

  28. Pachauri, A. K., & Pant, M. (1992). Landslide hazard mapping based on the geological attributes. Engineering Geology, 32, 81–100.

    Article  Google Scholar 

  29. Gupta, R. P., Saha, A. K., Arora, M. K., & Kumar, A. (1999). Landslide hazard zonation in a part of Bhagirathi Valley, Gharwal Himalaya, using integrated remote sensing and GIS. Journal of Himalayan Geology, 20, 71–85.

    Google Scholar 

  30. Sarkar, S., Kanungo, D. P., Patra, A.K., & Kumar, P. (2008). GIS based landslide susceptibility mapping—A case study in Indian Himalaya. In: Proceedings of international symposium on disaster mitigation of debris flows, slope failures and landslides (pp. 617–624).

  31. Chung, C. J., & Fabbri, A. G. (2008). Predicting landslides for risk analysis—Spatial models tested by a cross-validation technique. Geomorphology, 94(3–4), 438–452.

    Article  Google Scholar 

  32. Petley, D. N., Crick, W. D., & Hart, A. B. (2002). The use of satellite imagery in landslide studies in high mountain areas. In Proceedings of the Asian conference on remote sensing.

  33. Petley, D. N., Hearn, G. J., Hart, A., Rosser, N. J., Dunning, S. A., Oven, K., et al. (2007). Trends in landslide occurrence in Nepal. Natural Hazards, 43(1), 23–44.

    Article  Google Scholar 

  34. Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., & Paudyal, P. (2008). Predictive modelling of rainfall induced landslide hazard in lesser Himalaya of Nepal based on weight of evidence. Geomorphology, 102, 496–510. https://doi.org/10.1016/j.geomorph.2008.05.041.

    Article  Google Scholar 

  35. Hasegawa, S., Dahal, R. K., Yamanaka, M., Bhandary, N. P., Yatabe, R., & Inagaki, H. (2009). Causes of large-scale landslides in the lesser Himalaya of central Nepal. Environmental Geology, 57(6), 1423–1434.

    Article  Google Scholar 

  36. Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from Tinau watershed, west Nepal. Computers and Geoscience, 52, 398–408. https://doi.org/10.1016/j.cageo.2012.11.003.

    Article  Google Scholar 

  37. Dunning, S. A., Massey, C. I., & Rosser, N. J. (2009). Structural and geomorphological features of landslides in the Bhutan Himalaya derived from terrestrial laser scanning. Geomorphology, 103(1), 17–29.

    Article  Google Scholar 

  38. Dunning, S. A., Rosser, N. J., Petley, D. N., & Massey, C. R. (2006). Formation and failure of the Tsatichhu landslide dam, Bhutan. Landslides, 3(2), 107–113.

    Article  Google Scholar 

  39. Keunza, K., Dorji, Y., & Wangda, D. (2004). Landslides in Bhutan. Country Report, Department of Geology and Mines, Royal Government of Bhutan, Thimpu, 8.

  40. Sharma, M., & Kumar, R. (2008). GIS based landslide hazard zonation: A case study from the Parwanoo area, lesser and outer Himalaya, H.P., India. Bulletin of Engineering Geology and the Environment, 67, 129–137.

    Article  Google Scholar 

  41. Sharma, R. K., & Mehta, B. S. (2012). Macro-Zonation of landslide susceptibility in Garamaura—Swarghat—Gambhar section of national highway-21, Bilaspur district, Himachal Pradesh (India). Natural Hazards, 60, 671–688. https://doi.org/10.1007/s11069-011-0041-0.

    Article  Google Scholar 

  42. Ambraseys, N., & Bilham, R. (2000). A note on the Kangra Ms = 7.8 earthquake of 4 April 1905. Current Science, 79(1), 45–50.

    Google Scholar 

  43. Kumar, S., & Mahajan, A. K. (1991). Dharamsala Seismotectonic zone–Neotectonics and state of stress in the area. Journal of Himalayan Geology, 2(1), 53–57.

    Google Scholar 

  44. IS 1893(Part 1). (2002). Criteria for earthquake resistant design of structures, Part 1: General provisions and buildings (CED 39: Earthquake Engineering) Vth revision.

  45. Mahajan, A. K., & Virdi, N. S. (2000). Preparation of landslides hazard zonation Map of Dharamshala Town & adjoining areas, District Kangra (H.P.): Technical report. Wadia institute of Himalayan Geology, Dehradun, ref No. Endst/281/MA dt 27/2/99 (p. 45).

  46. Mahajan, A. K., & Kumar, S. (1994). Linear features registered on the Landsat Imagery in the Dharamsala-Palampur area NW Himalaya, vis-à-vis seismic status of the area. Acta Geophysica, II, 15–25.

    Google Scholar 

  47. Sah, M. P., & Srivastava, R. A. K. (1992). Morphology and facies of the alluvial-fan sedimentation in the Kangra Valley, Himachal Himalaya. Sedimentary geology, 76(1), 23–42.

    Article  Google Scholar 

  48. Sharma, R., Sharma, U. K., & Mahajan, A. K. (2015). Rainfall and anthropologically accelerated mass movement in the outer Himalaya, north of Dharamshala town, Kangra district, Himachal Pradesh: A cause of concern. Journal of Geological Society of India, 86(5), 563–569.

    Article  Google Scholar 

  49. Ayalew, L., & Yamagishi, H. (2005). The application of GIS based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains central Japan. Geomorphology, 65(1), 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010.

    Article  Google Scholar 

  50. Oommen, T., Cobin, P. F., Gierke, J. S., & Sajinkumar, K. S. (2018). Significance of variable selection and scaling issues for probabilistic modeling of rainfall-induced landslide susceptibility. Spatial Information Research, 26(1), 21–31.

    Article  Google Scholar 

  51. Horton, R. E. (1945). Erosional development of streams and their drainage basins: Hydro physical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.

    Article  Google Scholar 

  52. Chen, T., Niu, R., & Jia, X. (2016). A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environmental Earth Sciences, 75, 867. https://doi.org/10.1007/s12665-016-5317-y.

    Article  Google Scholar 

  53. Shraban, S., Archana, K. R., & Tapas, R. M. (2013). Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas. Geological Society of India, 82, 351–362.

    Article  Google Scholar 

  54. Chung, C. J. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65(12), 1389–1399.

    Google Scholar 

  55. Chung, C. J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.

    Article  Google Scholar 

  56. Martha, T. R. (2011). Detection of landslides by object-oriented image analysis. University of Twente, Faculty of Geo-Information Science and Earth Observation. Enschede, The Netherlands: ITC Printing Department.

Download references

Acknowledgements

The investigations reported here are the outcomes of the Department of Science and Technology (DST) sponsored Project No. NRDMS/11/3023/013(G) and is thankfully acknowledged. The authors would like to thank the Honourable Vice Chancellor, Central University of Himachal Pradesh for providing logistic support and permissions to undertake this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Sharma.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Mahajan, A.K. Information value based landslide susceptibility zonation of Dharamshala region, northwestern Himalaya, India. Spat. Inf. Res. 27, 553–564 (2019). https://doi.org/10.1007/s41324-019-00259-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-019-00259-z

Keywords

Navigation